GluR0 from Nostoc punctiforme (NpGluR0) is a bacterial homologue of the ionotropic glutamate receptor. The ligand-binding core of NpGluR0 was crystallized at 294 K using the hanging-drop vapour-diffusion method. The L-glutamate-complexed crystal belongs to space group C222(1), with unit-cell parameters a = 78.0, b = 145.1, c = 132.1 A. The crystals contain three subunits in the asymmetric unit, with a VM value of 2.49 A3 Da(-1). The diffraction limit of the L-glutamate complex data set was 2.1 A using synchrotron X-ray radiation at beamline BL-4A of the Pohang Accelerator Laboratory (Pohang, Korea).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1978126PMC
http://dx.doi.org/10.1107/S1744309105034329DOI Listing

Publication Analysis

Top Keywords

ligand-binding core
8
nostoc punctiforme
8
crystallization preliminary
4
preliminary x-ray
4
x-ray crystallographic
4
crystallographic analysis
4
analysis glur0
4
glur0 ligand-binding
4
core nostoc
4
punctiforme glur0
4

Similar Publications

Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA.

View Article and Find Full Text PDF

It is well known that activation of NMDA receptors can trigger long-term synaptic depression (LTD) and that a morphological correlate of this functional plasticity is spine retraction and elimination. Recent studies have led to the surprising conclusion that NMDA-induced spine shrinkage proceeds independently of ion flux and requires the initiation of protein synthesis, highlighting an unappreciated contribution of mRNA translation to non-ionotropic NMDAR signaling. Here we used NMDA-induced spine shrinkage in slices of mouse hippocampus as a readout to investigate this novel modality of synaptic transmission.

View Article and Find Full Text PDF

Metallo-supramolecular complexes enantioselectively target monkeypox virus RNA G-quadruplex and bolster immune responses against MPXV.

Natl Sci Rev

January 2025

Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

The Mpox virus (MPXV) has emerged as a formidable orthopoxvirus, posing an immense challenge to global public health. An understanding of the regulatory mechanisms of MPXV infection, replication and immune evasion will benefit the development of novel antiviral strategies. Despite the involvement of G-quadruplexes (G4s) in modulating the infection and replication processes of multiple viruses, their roles in the MPXV life cycle remain largely unknown.

View Article and Find Full Text PDF

Accurate prediction of drug-target binding affinity remains a fundamental challenge in contemporary drug discovery. Despite significant advances in computational methods for protein-ligand binding affinity prediction, current approaches still face substantial limitations in prediction accuracy. Moreover, the prevalent methodologies often overlook critical three-dimensional (3D) structural information, thereby constraining their practical utility in computer-aided drug design (CADD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!