DISC1 has been identified as a schizophrenia susceptibility gene based on linkage and SNP association studies and clinical data suggesting that risk SNPs impact on hippocampal structure and function. In cell and animal models, C-terminus-truncated DISC1 disrupts intracellular transport, neural architecture and migration, perhaps because it fails to interact with binding partners involved in neuronal differentiation such as fasciculation and elongation protein zeta-1 (FEZ1), platelet-activating factor acetylhydrolase, isoform Ib, PAFAH1B1 or lissencephaly 1 protein (LIS1) and nuclear distribution element-like (NUDEL). We hypothesized that altered expression of DISC1 and/or its molecular partners may underlie its pathogenic role in schizophrenia and explain its genetic association. We examined the expression of DISC1 and these selected binding partners as well as reelin, a protein in a related signaling pathway, in the hippocampus and dorsolateral prefrontal cortex of postmortem human brain patients with schizophrenia and controls. We found no difference in the expression of DISC1 or reelin mRNA in schizophrenia and no association with previously identified risk DISC1 SNPs. However, the expression of NUDEL, FEZ1 and LIS1 was each significantly reduced in the brain tissue from patients with schizophrenia and expression of each showed association with high-risk DISC1 polymorphisms. Although, many other DISC1 binding partners still need to be investigated, these data implicate genetically linked abnormalities in the DISC1 molecular pathway in the pathophysiology of schizophrenia.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddl040DOI Listing

Publication Analysis

Top Keywords

expression disc1
16
binding partners
16
disc1
10
disc1 binding
8
disc1 snps
8
patients schizophrenia
8
schizophrenia
7
expression
6
partners
5
binding
4

Similar Publications

Radiation therapy represents the primary treatment option for triple-negative breast cancer. However, radio resistance is associated with a poor prognosis and an increased risk of recurrence. Radioresistant MDA-MB-231 cells, a radioresistant triple-negative breast cancer cell line, were co-treated with ortho-topolin riboside and melatonin.

View Article and Find Full Text PDF

Synaptic development and functions have been hypothesized as crucial mechanisms of diverse neuropsychiatric disorders. Studies in past years suggest that mutations in the fragile X mental retardation 1 (FMR1) are associated with diverse mental disorders including intellectual disability, autistic spectrum disorder, and schizophrenia. In this study, we have examined genetical interactions between a select set of risk factor genes using fruit flies to find that dfmr1, the Drosophila homolog of the human FMR1 gene, exhibits functional interactions with DISC1 in synaptic development.

View Article and Find Full Text PDF

BMAL1-Potential Player of Aberrant Stress Response in Q31L Mice Model of Affective Disorders: Pilot Results.

Int J Mol Sci

November 2024

Research Institute of Mental Health, Tomsk National Research Medical Center, Russian Academy of Sciences, Aleutskaja, 4, 634014 Tomsk, Russia.

Dysregulation in the stress-response system as a result of genetical mutation can provoke the manifestation of affective disorders under stress conditions. Mutations in the human gene is one of the main risk factors of affective disorders. It was known that DISC1 regulates a large number of proteins including BMAL1, which is involved in the regulation of glucocorticoid synthesis in the adrenal glands and the sensitivity of glucocorticoid receptor target genes.

View Article and Find Full Text PDF

Introduction: Sevoflurane is an extensively used anesthetic for pediatric patients; however, numerous studies showed that sevoflurane (SEVO) may cause long-term neurodevelopmental toxicity. Dexmedetomidine (DEX) has been shown to be protective against SEVO-induced neurotoxicity, but the mechanism remains unclear. The effects and mechanisms of different DEX administration routes on SEVO-induced neurotoxicity and long-term cognitive defects were determined and further investigated the role of sex in these processes.

View Article and Find Full Text PDF

A combination of genetic predisposition and environmental factors contributes to the development of psychiatric disorders such as schizophrenia, bipolar disorder and major depressive disorder. Previous studies using mouse models suggested that prolonged high sucrose intake during puberty can serve as an environmental risk factor for the onset of psychiatric disorders. However, the impact of both the duration and timing of high sucrose consumption during different developmental stages on pathogenesis remains poorly defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!