Based on the interfacial adsorptive character of danazol onto the hanging mercury drop electrode (HMDE), a simple and sensitive square-wave adsorptive stripping voltammetric (SW-AdSV) procedure for the electrochemical analysis of this drug in pharmaceutical formulations has been developed and validated. Cyclic and SW-AdSV voltammograms showed a single well-defined irreversible cathodic peak. Various chemical and instrumental parameters affecting the monitored electroanalytical response were investigated and optimized for the danazol determination. Under these optimized conditions the SW-AdSV peak current showed a linear dependence on drug concentration over the range 7.5x10(-8)-3.75x10(-7) mol l-1 (r=0.999) with estimated detection limit (at a S/N ratio of 3) of 5.7x10(-9) mol l-1 (1.78 ng ml-1). A mean recovery of 100.9+/-1.2% and relative standard deviation of 1.07% were achieved. Possible interferences by substances usually present in the pharmaceutical tablets and formulations were also evaluated. The proposed electrochemical procedure was successfully applied for the determination of danazol in pharmaceutical capsules (Danol 100 mg) with mean recoveries of 100.48+/-0.87%. Results of the developed SW-AdSV method were comparable with those obtained by reported analytical procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpba.2005.11.046 | DOI Listing |
Anal Methods
January 2025
ampere - Laboratório de Plataformas Eletroquímicas - Universidade Federal de Santa Catarina, Departamento de Química, 88040-900 Florianópolis, SC, Brazil.
Terbinafine hydrochloride (TBF) is a broad-spectrum antifungal used to treat various dermatophyte infections affecting the skin, hair, and nails. Accurate, sensitive, and affordable analytical methods are crucial for quantifying this drug. In this study, we report on the use of carbon-based electrodes for the electrochemical determination of TBF in pharmaceutical samples, including raw materials and tablets.
View Article and Find Full Text PDFTalanta
April 2025
São Carlos Institute of Chemistry, University of São Paulo, Av. João Dagnone, 1100, 13566-590, São Carlos, SP, Brazil. Electronic address:
This study reports the development and implementation of a straightforward, rapid, and cost-effective voltammetric technique for piroxicam (PIR) detection at nanomolar concentrations in biological and environmental samples. The method involved the use of a screen-printed electrode (SPE) enhanced with a combination of Printex L6 carbon (PL6C) and polyaniline-based activated carbon (PAC) on a chitosan film crosslinked with epichlorohydrin (CTS:EPH). The detection was carried out using square-wave adsorptive anodic stripping voltammetry (SWAdASV) in a 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang 330013, Jiangxi, China. Electronic address:
The presence of radioactive U(VI) ions in sewage poses a significant threat to both the ecological environment and human health. In recent years, an electricity-driven remediation strategy has emerged as aprominent technique for the elimination of radionuclides. Specifically, the square wave transformation method is an emerging technology for electrochemical separation and enrichment of uranium.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Departamento de Química Física y Analítica, Universidad de Oviedo, 33006, Oviedo, Spain. Electronic address:
Screening and quantification of emerging contaminants in water is of enormous relevance due to its scarcity and harmful effects on aquatic life and human health. We present a simple and cost-effective electrochemical cell for determination of the antidepressant venlafaxine, an emerging contaminant included in the EU Watch list 2022. The cell consists of pencil leads used as electrodes and a microcentrifuge tube.
View Article and Find Full Text PDFAnal Methods
November 2024
Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Campus JK, 39100000, Diamantina, Minas Gerais, Brazil.
In response to the growing need for sustainable analytical methods, this study explores the repurposing of screen-printed electrodes (SPEs) that would otherwise be discarded. This involves recoating the working electrode surface with a graphite (Gr) and chitosan (CTS) dispersion, creating a reusable SPE (SPE-Gr/CTS). Demonstrating its utility, SPE-Gr/CTS was employed for the detection of 4-bromo-2,5-dimethoxyphenethylamine (2C-B), a phenylethylamine commonly used for recreational proposes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!