J Phys Chem B
Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
Published: March 2006
The adsorption of C2Hx (x=0-5) hydrocarbon fragments on Pt{110}(1x2) has been investigated using calculations based on density functional theory. For all the species, the most stable adsorption site identified completes the tetravalency of each carbon atom and involves the maximum possible number of Pt atoms subject to that constraint. The most stable adsorption sites for C2Hx fragments of stoichiometry x=2-5 involve ridge atoms, while trough sites stabilize C2H and C2 species. The relative stability of the fragments involved is compared via a free energy picture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp055128n | DOI Listing |
Adv Mater
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
The design and synthesis of metal-organic frameworks (MOFs) with outstanding light-harvesting and photoexcitation for artificial photocatalytic CO reduction is an attractive but challenging task. In this work, a novel aggregation-induced emission (AIE)-active ligand, tetraphenylpyrazine (PTTBPC) is proposed and utilized for the first time to construct a Zr-MOF photocatalyst via coordination with stable Zr-oxo clusters. Zr-MOF is featured by a scu topology with a two-fold interpenetrated framework, wherein the PTTBPC ligands enable strong light-harvesting and photoexcitation, while the Zr-oxo clusters facilitate CO adsorption and activation, as well as offer potential sites for further metal modification.
View Article and Find Full Text PDFNano Lett
January 2025
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
Efficient oxygen evolution reaction (OER) catalysts with fast kinetics, high efficiency, and stability are essential for scalable green production of hydrogen. The rational design and fabrication of catalysts play a decisive role in their catalytic behavior. This work presents a high-entropy catalyst, FeCoNiCuMo-O, synthesized via carbothermal shock.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Shanxi Coal International Energy Group Co., Ltd., Taiyuan 030000, China.
Photocatalytic reduction of CO will play a major role in future energy and environmental crisis. To investigate the adsorption mechanisms of CO and HO molecules involved in the catalytic process on the surface of anatase titanium dioxide 101 (TiO(101)) and the influence of Au atom doping on their adsorption, first-principles density functional theory calculations were used. The results show that 1.
View Article and Find Full Text PDFLangmuir
January 2025
School of Physics, East China University of Science and Technology, Shanghai 200237, China.
Black phosphorus (BP), a promising two-dimensional material, faces significant challenges for its applications due to its instability in air and water. Herein, molecular dynamics simulations reveal that a self-assembled ferrocene (FeCp) molecular layer can form on BP surfaces and remain stable in aqueous environments, predicting its effectiveness for passivation. This theoretical finding is corroborated by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and optical microscopy observations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
As an efficient, sustainable, and environmentally friendly semiconductor material, covalent organic frameworks (COFs) can generate hydrogen peroxide (HO) by photocatalysis, attracting wide attention in recent years. Herein, the effects of hydroxyl, methoxyl, and vinyl groups of imide-linked two-dimensional (2D) COFs on the photocatalytic production of HO were studied theoretically and experimentally. The introduction of vinyl groups greatly promotes the photogenerated charge separation and migration of COFs, providing more oxygen adsorption sites, stronger proton affinity, and lower intermediate binding energy, which effectively facilitates the rapid conversion of oxygen to HO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.