3Sigma- -X 3Sigma- electronic transition of linear C6H+ and C8H+ in neon matrixes.

J Phys Chem A

Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.

Published: March 2006

The electronic absorption spectra of linear C6H+ and C8H+ were recorded in 6 K neon matrixes following mass selective deposition. The (1) 3Sigma- -X 3Sigma- electronic transition is identified with the origin band at 515.8 and 628.4 nm for l-C6H+ and l-C8H+, respectively. One strong (near 267 nm) and several weaker electronic transitions of l-C8H+ have also been observed in the UV. The results of ab initio calculations carried out for linear and cyclic C6H+ are consistent with the assignment.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp054331fDOI Listing

Publication Analysis

Top Keywords

3sigma- 3sigma-
8
3sigma- electronic
8
electronic transition
8
linear c6h+
8
c6h+ c8h+
8
neon matrixes
8
electronic
4
transition linear
4
c8h+ neon
4
matrixes electronic
4

Similar Publications

Carbon dioxide capture is a vital approach for mitigating air pollution and global warming. In this context, metal-organic frameworks are promising candidates. Particularly, MIL-88A (M), where the metal nodes (M) are connected to fumarate linkers in its structure, has demonstrated significant potential for CO capture.

View Article and Find Full Text PDF

Optimized detection of calcium ion in serum using constant potential coulometry with metastable liquid-liquid contact doping enhanced PEDOT: PSS ink.

Bioelectrochemistry

January 2025

School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China; Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.

Highly stable calcium ion selective electrodes (Ca-ISEs) were developed by drop-casting a layer of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) as an ion-to-electron transfer layer onto Au electrode. The conductive PEDOT: PSS ink was prepared using a metastable liquid-liquid contact (MLLC) doping method, which induced phase separation, removed excess PSS, and significantly enhanced charge transfer kinetics and conductivity. The resulting Ca-ISEs exhibited excellent electrochemical performance.

View Article and Find Full Text PDF

Background: The unregulated use of pesticides by farmers, for crop productivity results in widespread contamination of organophosphates in real environmental samples, which is a growing societal concern about their potential health effects. The conventional approaches for the monitoring these organophosphate-based pesticides which include immunoassays, electrochemical methods, immunosensors, various chromatography techniques, along with some spectroscopic methods, are either costly, sophisticated, or involves the use of different metal complexes. Therefore, there is an urgent need for sensitive, quick, and easy-to-use detection techniques for the screening of widely used organophosphate-based pesticides.

View Article and Find Full Text PDF

Thermodynamic Stability in Transition Metal-Hydrogen Dications: Potential Energy Curves, Spectroscopic Parameters, and Bonding for VH.

J Comput Chem

January 2025

Universidade de São Paulo, Instituto de Química, Departamento de Química Fundamental, São Paulo, Brazil.

Seventeen electronic states of the dication VH were characterized by the SA-CASSCF/icMRCI methodology using very extended basis sets; 11 were described for the first time. Potential energy curves were constructed and the associated spectroscopic parameters evaluated. Triplet and quintet states correlating with the V + H channel are thermodynamic stable.

View Article and Find Full Text PDF

Interacting Dark Energy after DESI Baryon Acoustic Oscillation Measurements.

Phys Rev Lett

December 2024

School of Mathematics and Statistics, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, United Kingdom.

Article Synopsis
  • The study examines how baryon acoustic oscillations data from the Dark Energy Spectroscopic Instrument affects interacting dark energy (IDE) models, which suggest an energy transfer between dark matter and dark energy.
  • By integrating data from Planck-2018 and the Dark Energy Spectroscopic Instrument, researchers find a noticeable preference for interactions, leading to a present-day expansion rate that alleviates existing tensions with other measurements.
  • Although the IDE model offers a compelling explanation for various observational data and presents compatible expansion rates, it does struggle with predictions related to the overall matter density and large-scale structures in the universe.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!