Object: Failure of treatment for high-grade gliomas is usually due to local recurrence at the site of resection, indicating that a more aggressive local therapy could be beneficial. Photodynamic therapy (PDT) is a local treatment involving the administration of a tumor-localizing photosensitizing drug, in this case aminolevulinic acid (ALA). The effect depends on the total light energy delivered to the target tissue, but may also be influenced by the rate of light delivery.
Methods: In vitro experiments showed that the sensitivity to ALA PDT of BT4C multicellular tumor spheroids depended on the rate of light delivery (fluence rate). The BT4C tumors were established intracranially in BD-IX rats. Microfluorometry of frozen tissue sections showed that photosensitization is produced with better than 200:1 tumor/normal tissue selectivity after ALA injection. Four hours after intraperitoneal ALA injection (125 mg/kg), 26 J of 632 nm light was delivered interstitially over 15 (high fluence rate) or 90 (low fluence rate) minutes. Histological examination of animals treated 14 days after tumor induction demonstrated extensive tumor necrosis after low-fluence-rate PDT, but hardly any necrosis after high-fluence-rate treatment. Neutrophil infiltration in tumor tissue was increased by PDT, but was similar for both treatment regimens. Low-fluence-rate PDT administered 9 days after tumor induction resulted in statistically significant prolongation of survival for treated rats compared with nontreated control animals.
Conclusions: Treatment with ALA PDT induced pronounced necrosis in tumors only if the light was delivered at a low rate. The treatment prolonged the survival for tumor-bearing animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/jns.2006.104.1.109 | DOI Listing |
Med Phys
January 2025
Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, NKI-AvL, Amsterdam, Netherlands.
Photodynamic therapy (PDT) is a treatment modality clinically approved for several oncologic indications, including esophageal and endobronchial cancers, precancerous conditions including Barrett's esophagus and actinic keratosis, and benign conditions like age-related macular degeneration. While it is currently clinically underused, PDT is an area of significant research interest. Because PDT relies on the absorption of light energy by intrinsic or administered absorbers, the dosimetric quantity of interest is the absorbed energy per unit mass of tissue, proportional to the fluence rate of light in tissue.
View Article and Find Full Text PDFLiposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.
View Article and Find Full Text PDFPLoS One
January 2025
College of Safety Science and Engineering, Liaoning Technical University, Fuxin, Liaoning, China.
To investigate the impact of the oxidation temperature and variations in airflow conditions on coal spontaneous combustion characteristics, pre-oxidized coal samples were prepared using a programmed temperature rise method. Synchronous thermal analysis experiments and Fourier transform infrared spectroscopy were conducted to explore changes in the thermal effects and functional group content of the coal samples, respectively. The results indicate that variations in pre-oxidation conditions primarily in fluence the activation temperature and maximum weight loss temperature of the coal samples, while exerting a lesser impact on the critical temperature and ignition point.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Photodynamic therapy (PDT) relies on the interactions between light, photosensitizers, and tissue oxygen to produce cytotoxic reactive oxygen species (ROS), primarily singlet oxygen (O) through Type II photochemical reactions, along with superoxide anion radicals (O), hydrogen peroxide (HO), and hydroxyl radicals (OH) through Type I mechanisms. Accurate dosimetry, accounting for all three components, is crucial for predicting and optimizing PDT outcomes. Conventional dosimetry tracks only light fluence rate and photosensitizer concentration, neglecting the role of tissue oxygenation.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biomedical, Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!