A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling the pore structure of voltage-gated sodium channels in closed, open, and fast-inactivated conformation reveals details of site 1 toxin and local anesthetic binding. | LitMetric

In this work molecular modeling was applied to generate homology models of the pore region of the Na(v)1.2 and Na(v)1.8 isoforms of human voltage-gated sodium channels. The models represent the channels in the resting, open, and fast-inactivated states. The transmembrane portions of the channels were based on the equivalent domains of the closed and open conformation potassium channels KcsA and MthK, respectively. The critical selectivity loops were modeled using a structural template identified by a novel 3D-search technique and subsequently merged with the transmembrane portions. The resulting draft models were used to study the differences of tetrodotoxin binding to the tetrodotoxin-sensitive Na(v)1.2 (EC50: 0.012 microM) and -insensitive Na(v)1.8 (EC50: 60 microM) isoforms, respectively. Furthermore, we investigated binding of the local anesthetic tetracaine to Na(v)1.8 (EC50: 12.5 microM) in resting, conducting, and fast-inactivated state. In accordance with experimental mutagenesis studies, computational docking of tetrodotoxin and tetracaine provided (1) a description of site 1 toxin and local anesthetic binding sites in voltage-gated sodium channels. (2) A rationale for site 1 toxin-sensitivity versus -insensitivity in atomic detail involving interactions of the Na(v)1.2 residues F385-I and W943-II. (3) A working hypothesis of interactions between Na(v)1.8 in different conformational states and the local anesthetic tetracaine.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-005-0066-yDOI Listing

Publication Analysis

Top Keywords

local anesthetic
16
voltage-gated sodium
12
sodium channels
12
closed open
8
open fast-inactivated
8
site toxin
8
toxin local
8
anesthetic binding
8
transmembrane portions
8
nav18 ec50
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!