Neuronal nitric oxide synthase (nNOS) and cyclooxygenase-2 (COX-2) regulate the tubuloglomerular feedback (TGF) and renin-angiotensin system (RAS) in the kidney. In type 1 diabetic rats, renal overproduction of these enzymes and their relationship to the pathogenesis of diabetic nephropathy has been demonstrated. In the present study, we histologically and immunohistochemically investigated the kidneys of Otsuka Long-Evans Tokushima Fatty (OLETF) rats, as a model of type 2 diabetes, at 62 weeks of age (chronic phase of diabetes). The kidneys of OLETF rats showed typical diabetic nephropathy. Quantitative scores for glomerulosclerosis and interstitial fibrosis in OLETF rats were significantly higher than those of age-matched control Long-Evans Tokushima Otsuka (LETO) rats. nNOS- and COX-2-positive immunoreactions were observed in the distal tubules and collecting ducts. These reactions appeared to be more widely distributed in OLETF, and the number of nNOS-and COX-2-positive sites in the OLETF were significantly more than those in LETO rats. Expression of renin, angiotensin II, and inducible nitric oxide synthase (iNOS) were also examined immunohistochemically, and no differences between OLETF and LETO rats were observed in the distributions and the number of immunoreactive-sites. In conclusion, the overproduction of nNOS and COX-2 in the kidney of OLETF rats was confirmed, suggesting that the overproduction of nNOS and/or COX-2 does not affect the intrarenal RAS or iNOS production but does affect TGF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1538/expanim.55.17 | DOI Listing |
Br J Pharmacol
January 2025
Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Towada, Japan.
Background And Purpose: Eukaryotic elongation factor 2 kinase (eEF2K) belongs to the Ca/calmodulin-dependent protein kinase family. We previously revealed that A484954, a selective eEF2K inhibitor, caused hypotensive and diuretic effects via the production of nitric oxide (NO) in spontaneously hypertensive rats. Otsuka Long-Evans Tokushima Fatty (OLETF) rats are hypertensive because of obesity and type 2 diabetes.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Public Health, Kagawa University Faculty of Medicine, Kagawa 761-0793, Japan.
, known as Aonori in Japan, is an edible alga species that is mass-cultivated in Japan. Supplementation with Aonori-derived biomaterials has been reported to enhance metabolic health in previous studies. This was an experimental study that evaluated the metabolic health effects of NBF2, a formula made of algal and -derived biomaterials, on obesity and type 2 diabetes (T2DM).
View Article and Find Full Text PDFInt J Mol Sci
September 2024
Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University, 111 Kuboki, Soja-shi 719-1197, Okayama, Japan.
Obesity is a major global health concern. Studies suggest that the gut microflora may play a role in protecting against obesity. Probiotics, including lactic acid bacteria and , have garnered attention for their potential in obesity prevention.
View Article and Find Full Text PDFHeliyon
September 2024
Department of Physical Education, Chonnam National University, Gwangju, 61186, Republic of Korea.
Diabetes induces a range of macrovascular and microvascular changes, which lead to significant clinical complications. Although many studies have tried to solve the diabetic problem using drugs, it remains unclear. In this study, we investigated whether resistance exercise affects cardiovascular factors and inflammatory markers in diabetes.
View Article and Find Full Text PDFPLoS One
September 2024
Department of Urology, Faculty of Medical Science, University of Fukui, Fukui, Japan.
Purpose: Bladder dysfunction associated with type 2 diabetes mellitus (T2DM) includes urine storage and voiding disorders. We examined pathological conditions of the bladder wall in a rat T2DM model and evaluated the effects of the phosphodiesterase-5 (PDE-5) inhibitor tadalafil.
Materials And Methods: Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats and Long-Evans Tokushima Otsuka (LETO) rats were used as the T2DM and control groups, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!