AI Article Synopsis

  • Src protein is overexpressed in 70% of pancreatic adenocarcinomas and its down-regulation through siRNA significantly reduces tumor growth and metastasis in a mouse model.
  • Reducing Src levels in pancreatic tumor cells led to decreased phosphorylation of important signaling proteins (Akt and Erk) and lower production of growth factors like VEGF and IL-8.
  • Treatment with the Src/Abl inhibitor dasatinib also resulted in smaller tumors and fewer metastases, suggesting Src's crucial role in tumor progression and its potential as a target for cancer therapy.

Article Abstract

The nonreceptor protein tyrosine kinase Src is overexpressed in 70% of pancreatic adenocarcinomas. Here, we describe the effect of molecular and pharmacological down-regulation of Src on incidence, growth, and metastasis of pancreatic tumor cells in an orthotopic model. Src expression in L3.6pl human pancreatic tumor cells was reduced by stable expression of a plasmid encoding small interfering RNA (siRNA) to c-src. In stable siRNA clones, Src expression was reduced >80%, with no change in expression of the related kinases c-Yes and c-Lyn, and proliferation rates were similar in all clones. Phosphorylation of Akt and p44/42 Erk mitogen-activated protein kinase and production of VEGF and IL-8 in culture supernatants were also reduced (P < 0.005). On orthotopic implantation of varying cell numbers into nude mice, tumor incidence was unchanged; however, in the siRNA clones, large tumors failed to develop, and incidence of metastasis was significantly reduced, suggesting that c-Src activity is critical to tumor progression. To examine this possibility further, animals bearing established wild-type tumors were treated with the Src/Abl-selective inhibitor BMS-354825 (dasatinib). Tumor size was decreased, and incidence of metastases was significantly reduced in treated mice compared with controls. These results demonstrate that Src activation contributes to pancreatic tumor progression in this model, offering Src as a candidate for targeted therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1606527PMC
http://dx.doi.org/10.2353/ajpath.2006.050570DOI Listing

Publication Analysis

Top Keywords

src expression
12
tumor progression
12
pancreatic tumor
12
human pancreatic
8
cells orthotopic
8
tumor cells
8
sirna clones
8
tumor
7
src
6
expression
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!