Rheological behavior and organoleptic effects of ovalbumin addition in yogurt mousse production.

J Dairy Sci

Chemical Engineering and Environmental Technology Department, University of Oviedo, 33006 Oviedo, Spain.

Published: March 2006

Yogurt mousse is a novel, high added-value dairy product that has been well received by the market. This paper presents a study of the effect of the addition of ovalbumin to the product on its rheological and organoleptic qualities. The ovalbumin was previously separated from egg white with a high grade of purity using an ion exchange resin synthesized by the authors. Diverse rheological tests at different temperatures and corresponding sensorial assessments were conducted to compare samples without and with added ovalbumin. The obtained results confirm that the product is viscoelastic and combines the properties of foams and emulsions; the elastic component is greater than the viscous component. Moreover, at temperatures ranging from 5 to 15 degrees C, a usual interval of consumption, the product behaves rheologically in a similar way. Conversely, the addition of ovalbumin under the assayed conditions also makes the elastic character of the product increase at a given temperature. Finally, the sensorial assessment tests and determinations of stability and volume yield enabled us to verify that the addition of ovalbumin at an amount of 1.3% hardly alters the stability, resistance to shear stress, or the texture and improves the degree of foaming. Therefore, the product with additive is of good commercial quality.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.S0022-0302(06)72160-9DOI Listing

Publication Analysis

Top Keywords

addition ovalbumin
12
yogurt mousse
8
ovalbumin
6
product
6
rheological behavior
4
behavior organoleptic
4
organoleptic effects
4
effects ovalbumin
4
addition
4
ovalbumin addition
4

Similar Publications

Preparation, physicochemical characterization, and immunomodulatory activity of ovalbumin peptide-selenium nanoparticles.

Food Chem

January 2025

Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China. Electronic address:

During the preparation and development of selenium nanoparticles (SeNPs), natural bioactive peptides are added to enhance their physicochemical characteristics and functional properties. Among these properties, immunomodulatory activities, which include activating immune cells to strengthen immunity, constitute the major functions of the immune system. To obtain SeNPs with enhanced immunomodulation, ovalbumin peptide (OP) was used as a stabilizer, yielding OP-SeNPs.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged as one of the best gene delivery vectors for human gene therapy in vivo. However, the clinical efficacy of rAAV gene therapy is often hindered by the host immune response against its transgene products. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is specialised to process peptides presented by class I molecules of major histocompatibility complex.

View Article and Find Full Text PDF

Personalized Nanovaccine Based on STING-Activating Nanocarrier for Robust Cancer Immunotherapy.

ACS Nano

January 2025

Medical Research Center, The First Affiliated Hospital of Zhengzhou University, The Center of Infection and Immunity, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China.

Tumor-specific T cells play a vital role in potent antitumor immunity. However, their efficacy is severely affected by the spatiotemporal orchestration of antigen-presentation as well as the innate immune response in dendritic cells (DCs). Herein, we develop a minimalist nanovaccine that exploits a dual immunofunctional polymeric nanoplatform (DIPNP) to encapsulate ovalbumin (OVA) via electrostatic interaction when the nanocarrier serves as both STING agonist and immune adjuvant in DCs.

View Article and Find Full Text PDF

Antigens and adjuvants co-stabilized Pickering emulsions amplify immune responses of subunit vaccines.

J Control Release

January 2025

Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. Electronic address:

Most subunit antigens often induce suboptimal vaccination efficacy, possibly due to their low immunogenicity and limited ability to migrate to lymph nodes (LNs). Although the emergence of nanovaccine has significantly addressed these challenges, most formulations still require specific biological or chemical modifications to the carrier or antigen for efficient antigen loading. In this study, we report a Pickering emulsion-based nanovaccine that directly utilized antigens and adjuvants as stabilizers, effectively amplifying immune responses without additional physicochemical alterations.

View Article and Find Full Text PDF

Asthma is a chronic airway inflammatory disease of the airways characterized by the involvement of numerous inflammatory cells and factors. Therefore, targeting airway inflammation is one of the crucial strategies for developing novel drugs in the treatment of asthma. Phosphoinositide 3-kinase gamma (PI3Kγ) has been demonstrated to have a significant impact on inflammation and immune responses, thus emerging as a promising therapeutic target for airway inflammatory disease, including asthma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!