The mesenchyme controls the timing of pancreatic beta-cell differentiation.

Diabetes

Université Paris-Descartes, Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale, E363, Hôpital Necker, Paris, France.

Published: March 2006

The importance of mesenchymal-epithelial interactions in the proliferation of pancreatic progenitor cells is well established. Here, we provide evidence that the mesenchyme also controls the timing of beta-cell differentiation. When rat embryonic pancreatic epithelium was cultured without mesenchyme, we found first rapid induction in epithelial progenitor cells of the transcription factor neurogenin3 (Ngn3), a master gene controlling endocrine cell-fate decisions in progenitor cells; then beta-cell differentiation occurred. In the presence of mesenchyme, Ngn3 induction was delayed, and few beta-cells developed. This effect of the mesenchyme on Ngn3 induction was mediated by cell-cell contacts and required a functional Notch pathway. We then showed that associating Ngn3-expressing epithelial cells with mesenchyme resulted in poor beta-cell development via a mechanism mediated by soluble factors. Thus, in addition to its effect upstream of Ngn3, the mesenchyme regulated beta-cell differentiation downstream of Ngn3. In conclusion, these data indicate that the mesenchyme controls the timing of beta-cell differentiation both upstream and downstream of Ngn3.

Download full-text PDF

Source
http://dx.doi.org/10.2337/diabetes.55.03.06.db05-0839DOI Listing

Publication Analysis

Top Keywords

beta-cell differentiation
20
mesenchyme controls
12
controls timing
12
progenitor cells
12
mesenchyme
8
timing beta-cell
8
mesenchyme ngn3
8
ngn3 induction
8
downstream ngn3
8
beta-cell
6

Similar Publications

Fibroblasts play a crucial role in diabetic wound healing, and their senescence is the cause of delayed wound repair. It was reported that fibroblasts can secrete exosomes that can mediate a vital role in diabetic complications. Our purpose is to examine the biological function of high glucose (HG)-induced senescent fibroblasts from the perspective of exosomes and reveal the mechanism at cellular and animal levels.

View Article and Find Full Text PDF

Background: Anti-citrullinated peptide antibodies (ACPA)-negative (ACPA-) rheumatoid arthritis (RA) presents significant diagnostic and therapeutic challenges due to the absence of specific biomarkers, underscoring the need to elucidate its distinctive cellular and metabolic profiles for more targeted interventions.

Methods: Single-cell RNA sequencing data from peripheral blood mononuclear cells (PBMCs) and synovial tissues of patients with ACPA- and ACPA+ RA, as well as healthy controls, were analyzed. Immune cell populations were classified based on clustering and marker gene expression, with pseudotime trajectory analysis, weighted gene co-expression network analysis (WGCNA), and transcription factor network inference providing further insights.

View Article and Find Full Text PDF

RNA-binding proteins (RBPs) are critical regulators of mRNAs controlling all processes such as RNA transcription, transport, localization, translation, mRNA:ncRNA interactions, and decay. Cellular differentiation is driven by tissue-specific and/or tissue-preferred expression of proteins needed for the optimal function of mature cells, tissues and organs. Lens fiber cell differentiation is marked by high levels of expression of crystallin genes encoding critical proteins for lens transparency and light refraction.

View Article and Find Full Text PDF

Aims/introduction: Metformin treatment for hyperglycemia in pregnancy (HIP) beneficially improves maternal glucose metabolism and reduces perinatal complications. However, metformin could impede pancreatic β cell development via impaired mitochondrial function. A new anti-diabetes drug imeglimin, developed based on metformin, improves mitochondrial function.

View Article and Find Full Text PDF

Yangyin Yiqi Huoxue Decoction improves the mechanism of microglia activation against CIS-induced neuroinflammatory injury by regulating the Wnt signaling pathway.

Phytomedicine

January 2025

College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China; Key Laboratory of TCM Encephalopathy of Zhejiang Province, Hangzhou, Zhejiang 310053, China. Electronic address:

Background: Ischemic stroke is a predominant cause of neurological disability, characterized by neuroinflammation and neuronal apoptosis. The Wnt signaling pathway plays a critical role in brain repair. Yangyin Yiqi Huoxue Decoction, a traditional Chinese herbal formula, has shown potential in alleviating neuroinflammatory injury, yet, the precise mechanism underlying its effects remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!