p53 plays a critical role in cell cycle arrest and induction of apoptosis. Certain malignancies carry wild-type p53, which is frequently down-regulated by murine double minute 2 (MDM2) overexpression. Availability of a small-molecule inhibitor against MDM2, nutlin, has made it feasible to evaluate the anti-MDM2-based therapeutic strategies. The rationale for the current study is that functional p53 has been linked with improved responses to radiation treatment. Hence, this study evaluates the use of nutlin, a small-molecule inhibitor that blocks the interaction of p53 and MDM2, in sensitizing cancer cells to radiation. Expression of MDM2, p53, and p21 in both p53 wild-type and p53-defective lung cancer cell lines was examined. Clonogenic and 7-amino-actinomycin D studies were used to determine possible mechanisms of cell death. The combined effect of MDM2 inhibition and radiation on cell cycle was also studied. We found that radiosensitization by nutlin occurs in lung cancer cells with wild-type p53. There were increased apoptosis and cell cycle arrest following administration of nutlin and radiation. Furthermore, the combination of nutlin and radiation decreased the ability of endothelial cells to form vasculature, as shown by Matrigel assays. Our data suggest that nutlin is an effective radiosensitizer of p53 wild-type cells. The radiosensitizing effect seems to be at least partially due to induction of apoptosis and cell cycle arrest. In addition, nutlin may be an effective radiosensitizer of tumor vasculature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-05-0356 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India.
Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Razi Drug Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran.
Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2023
Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
Optimizing central carbon metabolism (CCM) represents an attractive and challenging strategy to improve the biosynthesis of valuable chemicals due to the complex regulation of the CCM in yeast. In this study, we triggered the similar Warburg effect of cancer cells in yeast strains by introducing the human hypoxia-inducible factor-1 (HIF-1) complex, which regulated the expression of numerous enzymes involved in CCM and redirected the metabolic flux from glycolysis to tricarboxylic acid cycle. This redirection promoted the production of squalene to a 2.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, 713-8 Kamiya, Kasugai, 486-0392, Japan.
Background: RAB11 is a small GTP-binding protein that regulates intracellular trafficking of recycling endosomes and is thereby involved in several neural functions. Highly similar RAB11 isoforms are encoded by RAB11A and RAB11B genes, and their pathogenic variants are associated with similar neurodevelopmental disorders, suggesting that RAB11A and RAB11B play similar and important roles in brain development. However, the detailed distribution patterns of these isoforms in various organs, including the brain, remain undetermined.
View Article and Find Full Text PDFCell Tissue Res
January 2025
Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar.
Impaired insulin secretion contributes to the pathogenesis of type 1 diabetes mellitus through autoimmune destruction of pancreatic β-cells and the pathogenesis of severe forms of type 2 diabetes mellitus through β-cell dedifferentiation and other mechanisms. Replenishment of malfunctioning β-cells via islet transplantation has the potential to induce long-term glycemic control in the body. However, this treatment option cannot widely be implemented in clinical due to healthy islet donor shortage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!