Recently, we have found dramatic overexpression of ecto-5'-nucleotidase (or CD73), a glycosylphosphatidylinositol-anchored component of lipid rafts, in estrogen receptor-negative [ER-] breast cancer cell lines and in clinical samples. To find out whether there is a more general shift in expression profile of membrane proteins, we undertook an investigation on the expression of selected membrane and cytoskeletal proteins in aggressive and metastatic breast cancer cells. Our analysis revealed a remarkably uniform shift in expression of a broad range of membrane, cytoskeletal, and signaling proteins in ER- cells. A similar change was found in two in vitro models of transition to ER- breast cancer: drug-resistant Adr2 and c-Jun-transformed clones of MCF-7 cells. Interestingly, similar expression pattern was observed in normal fibroblasts, suggesting the commonality of membrane determinants of invasive cancer cells with normal mesenchymal phenotype. Because a number of investigated proteins are components of lipid rafts, our results suggest that there is a major remodeling of lipid rafts and underlying cytoskeleton in ER- breast cancer. To test whether this broadly defined ER- phenotype could be reversed by treatment with differentiating agent, we treated ER- cells with trichostatin A, an inhibitor of histone deacetylase, and observed reversal of mesenchymal and reappearance of epithelial markers. Changes in gene and protein expression also included increased capacity to generate adenosine and altered expression profile of adenosine receptors. Thus, our results suggest that during transition to invasive breast cancer there is a significant structural reorganization of lipid rafts and underlying cytoskeleton that is reversed upon histone deacetylase inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1535-7163.MCT-05-0226 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India.
Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Information Technology, Uppsala University, 75237, Uppsala, Sweden.
Objectives: The aim is to assess the feasibility and accuracy of a novel quantitative ultrasound (US) method based on global speed-of-sound (g-SoS) measurement using conventional US machines, for breast density assessment in comparison to mammographic ACR (m-ACR) categories.
Materials And Methods: In a prospective study, g-SoS was assessed in the upper-outer breast quadrant of 100 women, with 92 of them also having m-ACR assessed by two radiologists across the entire breast. For g-SoS, ultrasonic waves were transmitted from varying transducer locations and the image misalignments between these were then related analytically to breast SoS.
Funct Integr Genomics
January 2025
Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.
Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
January 2025
Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.
View Article and Find Full Text PDFClin Transl Oncol
January 2025
Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!