A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Disrupting the enzyme complex regulating O-GlcNAcylation blocks signaling and development. | LitMetric

Although the knowledge that nuclear and cytoplasmic proteins are modified with N-acetylglucosamine has existed for decades, little has been shown as to its function until recently. There are now substantial data highlighting the significance of proper regulation of this modification in multiple cellular processes. Currently, only two enzymes are known that regulate this modification. O-GlcNAc transferase (OGT) modifies protein substrates posttranslationally by adding the N-acetylglucosamine. Bifunctional nuclear/cytoplasmic O-GlcNAcase and acetyl transferase (NCOAT) is responsible for cleaving the modification from target proteins. Here, we demonstrate for the first time an unusual association of these two opposing enzymes into a single O-GlcNAczyme complex. NCOAT and OGT associate strongly through specific domains such that NCOAT accompanies OGT, with histone deacetylases (HDACs), into transcription corepression complexes. Exclusion of NCOAT activities from OGT association blocks proper estrogen-dependent cell signaling as well as mammary development in transgenic mice. This demonstrates that NCOAT is in a strategic position to rapidly counteract OGT and HDAC without requiring its recruitment.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwj096DOI Listing

Publication Analysis

Top Keywords

ogt
5
ncoat
5
disrupting enzyme
4
enzyme complex
4
complex regulating
4
regulating o-glcnacylation
4
o-glcnacylation blocks
4
blocks signaling
4
signaling development
4
development knowledge
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!