A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multivariable modeling of radiotherapy outcomes, including dose-volume and clinical factors. | LitMetric

Purpose: The probability of a specific radiotherapy outcome is typically a complex, unknown function of dosimetric and clinical factors. Current models are usually oversimplified. We describe alternative methods for building multivariable dose-response models.

Methods: Representative data sets of esophagitis and xerostomia are used. We use a logistic regression framework to approximate the treatment-response function. Bootstrap replications are performed to explore variable selection stability. To guard against under/overfitting, we compare several analytical and data-driven methods for model-order estimation. Spearman's coefficient is used to evaluate performance robustness. Novel graphical displays of variable cross correlations and bootstrap selection are demonstrated.

Results: Bootstrap variable selection techniques improve model building by reducing sample size effects and unveiling variable cross correlations. Inference by resampling and Bayesian approaches produced generally consistent guidance for model order estimation. The optimal esophagitis model consisted of 5 dosimetric/clinical variables. Although the xerostomia model could be improved by combining clinical and dose-volume factors, the improvement would be small.

Conclusions: Prediction of treatment response can be improved by mixing clinical and dose-volume factors. Graphical tools can mitigate the inherent complexity of multivariable modeling. Bootstrap-based variable selection analysis increases the reliability of reported models. Statistical inference methods combined with Spearman's coefficient provide an efficient approach to estimating optimal model order.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2005.11.022DOI Listing

Publication Analysis

Top Keywords

variable selection
12
multivariable modeling
8
clinical factors
8
spearman's coefficient
8
variable cross
8
cross correlations
8
model order
8
clinical dose-volume
8
dose-volume factors
8
variable
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!