Removal of heavy metals from kaolin using an upward electrokinetic soil remedial (UESR) technology.

J Hazard Mater

School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Published: August 2006

An upward electrokinetic soil remedial (UESR) technology was proposed to remove heavy metals from contaminated kaolin. Unlike conventional electrokinetic treatment that uses boreholes or trenches for horizontal migration of heavy metals, the UESR technology, applying vertical non-uniform electric fields, caused upward transportation of heavy metals to the top surface of the treated soil. The effects of current density, treatment duration, cell diameter, and different cathode chamber influent (distilled water or 0.01 M nitric acid) were studied. The removal efficiencies of heavy metals positively correlated to current density and treatment duration. Higher heavy metals removal efficiency was observed for the reactor cell with smaller diameter. A substantial amount of heavy metals was accumulated in the nearest to cathode 2 cm layer of kaolin when distilled water was continuously supplied to the cathode chamber. Heavy metals accumulated in this layer of kaolin can be easily excavated and disposed off. The main part of the removed heavy metals was dissolved in cathode chamber influent and moved away with cathode chamber effluent when 0.01 M nitric acid was used, instead of distilled water. Energy saving treatment by UESR technology with highest metal removal efficiencies was provided by two regimes: (1) by application of 0.01 M nitric acid as cathode chamber influent, cell diameter of 100 mm, duration of 18 days, and constant voltage of 3.5 V (19.7 k Wh/m(3) of kaolin) and (2) by application of 0.01 M nitric acid as cathode chamber influent, cell diameter of 100 cm, duration of 6 days, and constant current density of 0.191 mA/cm(2) (19.1 k Wh/m(3) of kaolin).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2006.01.029DOI Listing

Publication Analysis

Top Keywords

heavy metals
36
cathode chamber
24
uesr technology
16
chamber influent
16
001 nitric
16
nitric acid
16
current density
12
cell diameter
12
distilled water
12
metals
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!