The limited regenerative capacity of the adult central nervous system (CNS) renders it unable to fully recover from injury or disease. Although stem and progenitor cells have been shown to reside throughout the brain, in most regions they exist as quiescent cell populations and do not divide sufficiently to replace damaged or destroyed cells. In an effort to stimulate the proliferative capacity of these multipotent cells, we sought to determine the in vivo response of the adult CNS to an exogenous application of basic fibroblast growth factor (bFGF), a known mitogen to stem and progenitor cells. Specifically, we administered bFGF to the striatum of adult rats at varying concentrations (1, 10, 100, 1,000, or 10,000 ng/mL in saline) so as to establish a dose response curve for bFGF-induced cell proliferation. Forty-eight hours following bFGF administration, animals were injected with 5-bromodeoxyuridine to label dividing cells. Of the doses assessed, we found that 1,000 ng/mL bFGF generated the greatest proliferative response over that observed in animals given a control saline injection. Further, the proliferative response of the striatum to bFGF administration could be enhanced twofold by supplementing this growth factor with heparin sulfate, a factor that facilitates the binding of bFGF to its receptors. By determining the maturational fate of the proliferating cell population, we found that a significant proportion of newly generated cells resulting from bFGF administration differentiated into astrocytes. Collectively, these studies demonstrate the potential of bFGF to promote proliferation in the adult brain, which can be exploited to facilitate cell replacement therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/neu.2006.23.205 | DOI Listing |
Clin Sci (Lond)
January 2025
Center for Interdisciplinary Research in Biology, College de France, Institut National de la Santé et de la Recherche Médicale, Paris, France.
Apelin, a (neuro) vasoactive peptide, plays a prominent role in controlling water balance and cardiovascular functions. Apelin and its receptor co-localize with vasopressin in magnocellular vasopressinergic neurons. Apelin receptors (Apelin-Rs) are also expressed in the collecting ducts of the kidney, where vasopressin type 2 receptors are also present.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Anesthesiology and Reanimation, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
Background: Acute systemic inflammation affects many organs and it occurs in a wide range of conditions such as acute lung injury (ALI). Inflammation-triggered oxidative pathways together with the caspase activation seen in ALI, result in apoptosis. Dapagliflozin (DPG) is an agent that is known to have oxidative stress-reducing and anti-inflammatory effects in many tissues.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
January 2025
National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.
Purpose: To investigate whether in diabetic cataract (DC), FoxO1 regulates high glucose (HG)-induced activation of NLRC4/IL-6 inflammatory mediators in human lens epithelial cells (SRA01/04) via the JAK1/STAT1 pathway, leading to cataract formation.
Methods: Expression levels of FoxO1, inflammatory factor IL-6 and inflammatory vesicle NLRC4 were examined in SRA01/04 under high glucose (HG) stress at 25-150 mM. Rat lenses were also cultured using HG medium with or without the addition of the FoxO1 inhibitor AS1842856 and the JAK1 agonist RO8191.
Histochem Cell Biol
January 2025
Departments of Obstetrics and Gynecology, School of Medicine, Akdeniz University, Antalya, Turkey.
Preeclampsia (PE) is a severe placental complication occurring after the 20th week of pregnancy. PE is associated with inflammation and an increased immune reaction against the fetus. TYRO3 and PROS1 suppress inflammation by clearing apoptotic cells.
View Article and Find Full Text PDFJ Mol Histol
January 2025
Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Tumor necrosis factor-α (TNF-α) induces a multitude of actions and consequences in bone and cartilage resorption and immune response augmentation. In this research, we aimed to investigate the effects of TNF-α on osteogenesis parameters in newborn mice. Experimental research was conducted on 42 pregnant mice, dividing into seven groups as follows: control (no injection), vehicle 1 (PBS injection on 7-9th pregnancy days (PD)), vehicle 2 (PBS injection during pregnancy), experimental 1 (injection of 10 ng/kg of TNF-α on 7-9th PD), experimental 2 (injection of 100 ng/kg of TNF-α on 7-9th PD), experimental 3 (injection of 10 ng/kg of TNF-α during pregnancy) and experimental 4 (injection of 100 ng/kg of TNF-α during pregnancy).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!