The anthrax toxin complex consists of three different molecules, protective antigen (PA), lethal factor (LF), and edema factor (EF). The activated form of PA, PA(63), forms heptamers that insert at low pH in biological membranes forming ion channels and that are necessary to translocate EF and LF in the cell cytosol. LF and EF are intracellular active enzymes that inhibit the host immune system promoting bacterial outgrowth. Here, PA(63) was reconstituted into artificial lipid bilayer membranes and formed ion-permeable channels. The heptameric PA(63) channel contains a binding site for LF on the cis side of the channel. Full-size LF was found to block the PA(63) channel in a dose- and ionic-strength-dependent way with half-saturation constants in the nanomolar concentration range. The binding curves suggest a 1:1 relationship between (PA(63))(7) and bound LF that blocks the channel. The presence of a His(6) tag at the N-terminal end of LF strongly increases the affinity of LF toward the PA(63) channel, indicating that the interaction between LF and the PA(63) channel occurs at the N terminus of the enzyme. The LF-mediated block of the PA(63)-induced membrane conductance is highly asymmetric with respect to the sign of the applied transmembrane potential. The result suggested that the PA(63) heptamers contain a high-affinity binding site for LF inside domain 1 or the channel vestibule and that the binding is ionic-strength-dependent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0524316 | DOI Listing |
Front Pharmacol
September 2024
Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Ulm, Germany.
Toxins (Basel)
December 2021
Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
We are studying the structures of bacterial toxins that form ion channels and enable macromolecule transport across membranes. For example, the crystal structure of the α-hemolysin (α-HL) channel in its state was confirmed using neutron reflectometry (NR) with the protein reconstituted in membranes tethered to a solid support. This method, which provides sub-nanometer structural information, could also test putative structures of the protective antigen 63 (PA63) channel, locate where lethal factor and edema factor toxins (LF and EF, respectively) bind to it, and determine how certain small molecules can inhibit the interaction of LF and EF with the channel.
View Article and Find Full Text PDFJ Phys Chem B
June 2021
Department of Biology, The Catholic University of America, 620 Michigan Avenue, Washington D.C., 20064, United States.
"Pink" or 1/ noise is a natural phenomenon omnipresent in physics, economics, astrophysics, biology, and even music and languages. In electrophysiology, the stochastic activity of a number of biological ion channels and artificial nanopores could be characterized by current noise with a 1/ power spectral density. In the anthrax toxin channel (PA), it appears as fast voltage-independent current interruptions between conducting and nonconducting states.
View Article and Find Full Text PDFBiophys J
November 2019
Department of Biology, The Catholic University of America, Washington DC. Electronic address:
Obstructing conductive pathways of the channel-forming toxins with targeted blockers is a promising drug design approach. Nearly all tested positively charged ligands have been shown to reversibly block the cation-selective channel-forming protective antigen (PA) component of the binary anthrax toxin. The cationic ligands with more hydrophobic surfaces, particularly those carrying aromatic moieties, inhibited PA more effectively.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
November 2018
Department of Biology, The Catholic University of America, 620 Michigan Ave NE, Washington 20064, DC, USA. Electronic address:
Anthrax toxin action requires triggering of natural endocytic transport mechanisms whereby the binding component of the toxin forms channels (PA) within endosomal limiting and intraluminal vesicle membranes to deliver the toxin's enzymatic components into the cytosol. Membrane lipid composition varies at different stages of anthrax toxin internalization, with intraluminal vesicle membranes containing ~70% of anionic bis(monoacylglycero)phosphate lipid. Using model bilayer measurements, we show that membrane lipids can have a strong effect on the anthrax toxin channel properties, including the channel-forming activity, voltage-gating, conductance, selectivity, and enzymatic factor binding.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!