Previous research with speeded-response interference tasks modeled on the Garner paradigm has demonstrated that task-irrelevant variations in either emotional expression or facial speech do not interfere with identity judgments, but irrelevant variations in identity do interfere with expression and facial speech judgments. Sex, like identity, is a relatively invariant aspect of faces. Drawing on a recent model of face processing according to which invariant and changeable aspects of faces are represented in separate neurological systems, we predicted asymmetric interference between sex and emotion classification. The results of Experiment 1, in which the Garner paradigm was employed, confirmed this prediction: Emotion classifications were influenced by the sex of the faces, but sex classifications remained relatively unaffected by facial expression. A second experiment, in which the difficulty of the tasks was equated, corroborated these findings, indicating that differences in processing speed cannot account for the asymmetric relationship between facial emotion and sex processing. A third experiment revealed the same pattern of asymmetric interference through the use of a variant of the Simon paradigm. To the extent that Garner interference and Simon interference indicate interactions at perceptual and response-selection stages of processing, respectively, a challenge for face processing models is to show how the same asymmetric pattern of interference could occur at these different stages. The implications of these findings for the functional independence of the different components of face processing are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/bf03193553 | DOI Listing |
Nucleic Acids Res
January 2025
University of Maryland, 4066 Campus Drive, College Park, MD 20742, USA.
Progress in biology has generated numerous lists of genes that share some property. But advancing from these lists of genes to understanding their roles is slow and unsystematic. Here we use RNA silencing in Caenorhabditis elegans to illustrate an approach for prioritizing genes for detailed study given limited resources.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China.
Retinal vessel segmentation is crucial for diagnosing and monitoring ophthalmic and systemic diseases. Optical Coherence Tomography Angiography (OCTA) enables detailed imaging of the retinal microvasculature, but existing methods for OCTA segmentation face significant limitations, such as susceptibility to noise, difficulty in handling class imbalance, and challenges in accurately segmenting complex vascular morphologies. In this study, we propose VDMNet, a novel segmentation network designed to overcome these challenges by integrating several advanced components.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India.
The Josephson diode effect (JDE), characterized by asymmetric critical currents in a Josephson junction, has drawn considerable attention in the field of condensed matter physics. We investigate the conditions under which JDE can manifest in a one-dimensional Josephson junction composed of a spin-orbit-coupled quantum wire with an applied Zeeman field, connected between two superconductors (SCs). Our study reveals that while spin-orbit coupling (SOC) and a Zeeman field in the quantum wire are not sufficient to induce JDE when the SCs are purely singlet, introduction of triplet pairing in the SCs leads to the emergence of JDE.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States.
Highly fluorinated naphthyl aldehyde and binaphthyl aldehyde ()- were designed and synthesized for fluorous-phase-based sensing. Greatly enhanced sensitivity and chemoselectivity in going from to ()- in the fluorescent detection of cysteine has been discovered. This is attributed to the increased structural rigidity of the axially chiral binaphthyl unit in ()- upon reaction with cysteine to form the corresponding thiazolidine product.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Mechanical and Electrical Engineering, Quzhou College of Technology, Quzhou, 324000, Zhejiang, China.
Integrating the Internet of Things (IoT) in smart grids has revolutionized the energy sector, enabling real-time data collection and efficient energy distribution. However, this integration also introduces significant security challenges, particularly data encryption. Traditional encryption algorithms used in IoT are vulnerable to various attacks, and the advent of quantum computing exacerbates these vulnerabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!