The purpose of this study was to demonstrate corticospinal tract compression that was due to a hematoma by using diffusion tensor tractography (DTT) and functional MRI (fMRI) in a patient with an intracerebral hemorrhage (ICH). A 23-year-old right-handed woman presented with severe paralysis of her right extremities at the onset of a spontaneous ICH. Over the first three days from onset, the motor function of the affected upper and lower extremities rapidly recovered to the extent that she was able to overcome applied resistance to the affected limbs, and her limbs regained normal function 3 weeks after onset. The tract of the right hemisphere originated from the primary sensori-motor cortex (SM1) and it passed through the known corticospinal tract pathway. However, the tract of the left hemisphere was similar to that of the right hemisphere except that it was displaced to the antero-medial side by the hematoma at the cerebral peduncle. Only the contralateral SM1 area centered on the precentral knob was activated during affected (right) or unaffected (left) hand movements, respectively. In conclusion, fMRI and DTT demonstrated a corticospinal tract compression due to hematoma in this patient. We conclude that the combined use of these two modalities appears to improve the accuracy of investigating the state of the corticospinal tract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2687571PMC
http://dx.doi.org/10.3349/ymj.2006.47.1.135DOI Listing

Publication Analysis

Top Keywords

corticospinal tract
20
tract compression
12
compression hematoma
12
hematoma patient
8
patient intracerebral
8
intracerebral hemorrhage
8
diffusion tensor
8
tensor tractography
8
functional mri
8
tract
6

Similar Publications

Understanding structural-functional connectivity coupling in patients with major depressive disorder: A white matter perspective.

J Affect Disord

January 2025

Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China; Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases (Yantai Yuhuangding Hospital), Yantai, Shandong 264000, PR China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong 264000, PR China. Electronic address:

Purpose: To elucidate the structural-functional connectivity (SC-FC) coupling in white matter (WM) tracts in patients with major depressive disorder (MDD).

Methods: A total of 178 individuals diagnosed with MDD and 173 healthy controls (HCs) were recruited for this study. The Euclidean distance was calculated to assess SC-FC coupling.

View Article and Find Full Text PDF

Corticospinal motor neurons (CSMN), located in the motor cortex of the brain, are one of the key components of the motor neuron circuitry. They are in part responsible for the initiation and modulation of voluntary movement, and their degeneration is the hallmark for numerous diseases, such as amyotrophic lateral sclerosis (ALS), hereditary spastic paraplegia, and primary lateral sclerosis. Cortical hyperexcitation followed by in-excitability suggests the early involvement of cortical dysfunction in ALS pathology.

View Article and Find Full Text PDF

Neurons in the central nervous system (CNS) lose regenerative potential with maturity, leading to minimal corticospinal tract (CST) axon regrowth after spinal cord injury (SCI). In young rodents, knockdown of PTEN, which antagonises PI3K signalling by hydrolysing PIP3, promotes axon regeneration following SCI. However, this effect diminishes in adults, potentially due to lower PI3K activation leading to reduced PIP3.

View Article and Find Full Text PDF

Cortical layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons are embedded in distinct information processing pathways. Their morphology, connectivity, electrophysiological properties, and role in behavior have been extensively analyzed. However, the molecular composition of their synapses remains largely uncharacterized.

View Article and Find Full Text PDF

The ability of neurons to sense and respond to damage is crucial for maintaining homeostasis and facilitating nervous system repair. For some cell types, notably dorsal root ganglia (DRG) and retinal ganglion cells (RGCs), extensive profiling has uncovered a significant transcriptional response to axon injury, which influences survival and regenerative outcomes. In contrast, the injury responses of most supraspinal cell types, which display limited regeneration after spinal damage, remain mostly unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!