Inactivation of Wnt inhibitory factor-1 (WIF1) expression by epigenetic silencing is a common event in breast cancer.

Carcinogenesis

Department of Biochemistry and Molecular Biology and UF-Shands Cancer Center Program in Cancer Genetics, Epigenetics and Tumor Virology, University of Florida College of Medicine, Gainesville, FL 32610, USA.

Published: July 2006

The Wnt signaling pathway is a powerful and prominent oncogenic mechanism dysregulated in numerous cancer types. While evidence from transgenic mouse models and studies of human tumors clearly indicate that this pathway is of likely importance in human breast cancer, few clues as to the exact molecular nature of Wnt dysregulation have been uncovered in this tumor type. Here, we show that the Wnt inhibitory factor-1 (WIF1) gene, which encodes a secreted protein antagonistic to Wnt-dependent signaling, is targeted for epigenetic silencing in human breast cancer. We show that cultured human breast tumor cell lines display absent or low levels of WIF1 expression that are increased when cells are cultured with the DNA demethylating agent 5-aza-2'-deoxycytidine. Furthermore, the WIF1 promoter is aberrantly hypermethylated in these cells as judged by both methylation-specific PCR and bisulfite genomic sequencing. Using a panel of patient-matched breast tumors and normal breast tissue, we show that WIF1 expression is commonly diminished in breast tumors when compared with normal tissue and that this correlates with WIF1 promoter hypermethylation. Analysis of a panel of 24 primary breast tumors determined that the WIF1 promoter is aberrantly methylated in 67% of these tumors, indicating that epigenetic silencing of this gene is a frequent event in human breast cancer. Using an isogenic panel of cell lines proficient or deficient in the DNA methyltransferases (DNMTs) DNMT1 and/or DNMT3B, we show that hypermethylation of the WIF1 promoter is attributable to the cooperative activity of both DNMT1 and DNMT3B. Our findings establish the WIF1 gene as a target for epigenetic silencing in breast cancer and provide a mechanistic link between the dysregulation of Wnt signaling and breast tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1093/carcin/bgi379DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
epigenetic silencing
16
human breast
16
wif1 promoter
16
wif1 expression
12
breast tumors
12
breast
11
wif1
9
wnt inhibitory
8
inhibitory factor-1
8

Similar Publications

Background: Cognitive dysfunction emerges as a manifestation of reduced estrogen levels following ovariectomy in an individual. However, the conventional use of estrogen replacement therapy could increase the risk of breast cancer and thromboembolism. Icariin is a natural compound that has been reported to be a neuroprotective agent against dementia.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

The TT & WF Chao Center for BRAIN and Houston Methodist Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA.

Background: Global epidemiological studies involving over nine million participants have shown a 35% lower incidence of Alzheimer's Disease (AD) in older cancer survivors compared to those without a history of cancer. This inverse relationship, consistent across recent studies with methodological controls, suggests that cancer itself, rather than cancer treatments, may offer protective factors against AD. This insight opens avenues for novel therapeutic strategies targeting early AD by harnessing cancer-associated protective factors.

View Article and Find Full Text PDF

ENPP-1 is a transmembrane enzyme involved in nucleotide metabolism, and its overexpression is associated with various cancers, making it a potential therapeutic target and biomarker for early tumor diagnosis. Current detection methods for ENPP-1 utilize a colorimetric probe, , which has significant limitations in sensitivity. Here, we present probe , the first nucleic acid-based chemiluminescent probe designed for rapid and highly sensitive detection of ENPP-1 activity.

View Article and Find Full Text PDF

Background: The metal oxide nanoparticles possess unique properties such as biological compatibility, superior reactivity, and capacity to develop reactive oxygen species, due to this they have drawn significant interest in cancer treatment. The various MONPs such as cerium oxide, Copper oxide, Iron oxide, Titanium dioxide, and Zinc oxide have been investigated for several types of cancers including brain, breast, cervical, colon, leukemia, liver, lung, melanoma, ovarian, and prostate cancers. However, traditional physiochemical synthetic methods for MONPs commonly include toxic materials, a major concern that raises questions regarding their biocompatibility and safety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!