Epigenetic events, resulting changes in gene expression capacity, are important in tumour progression, and variation in genes involved in epigenetic mechanisms might therefore be important in cancer susceptibility. To evaluate this hypothesis, we examined common variants in 12 genes coding for DNA methyltransferases (DNMT), histone acetyltransferases, histone deacetyltransferases, histone methyltrasferases and methyl-CpG binding domain proteins, for association with breast cancer in a large case-control study (N cases = 4474 and N controls = 4580). We identified 63 single nucleotide polymorphisms (SNPs) that efficiently tag all the known common variants in these genes, and are also expected to tag any unknown SNP in each gene. We found some evidence for association for six SNPs: DNMT3b-c31721t [P (2 df) = 0.007], PRDM2-c99243 t [P (2 df) = 0.03] and t105413c [P-recessive = 0.05], EHMT1-g-9441a [P (2df) = 0.05] and g41451t (P-trend = 0.04), and EHMT2-S237S [P (2df) = 0.04]. The most significant result was for DNMT3b-c31721t (P-trend = 0.124 after adjusting for multiple testing). However, there were three other results with P < 0.05. The permutation-based probability of this occurring by chance was 0.335. These significant SNPs were genotyped in 75 human cancer cell lines from different tumour types to assess if there was an association between them and six epigenetic measures. No statistically significant association was found. However, a trend was observed: homozygotes for the rare alleles of the EHMT1, EHMT2 and PRDM2 had a mean value for both trimethylation of K9 and K27 of histone H3 remarkably different to the homozygotes for the common alleles. Thus, these preliminary observations suggest the possible existence of a functional consequence of harbouring these genetic variants in histone methyltransferases, and warrant the design of larger epidemiological and biochemical studies to establish the true meaning of these findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/carcin/bgi375 | DOI Listing |
Mol Genet Genomic Med
January 2025
The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.
Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.
Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.
Front Mol Neurosci
December 2024
Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States.
Post-transcriptional mechanisms, such as alternative splicing and polyadenylation, are recognized as critical regulatory processes that increase transcriptomic and proteomic diversity. The advent of next-generation sequencing and whole-genome analyses has revealed that numerous transcription and epigenetic regulators, including transcription factors and histone-modifying enzymes, undergo alternative splicing, most notably in the nervous system. Given the complexity of regulatory processes in the brain, it is conceivable that many of these splice variants control different aspects of neuronal development.
View Article and Find Full Text PDFRare diseases are collectively common, affecting approximately one in twenty individuals worldwide. In recent years, rapid progress has been made in rare disease diagnostics due to advances in DNA sequencing, development of new computational and experimental approaches to prioritize genes and genetic variants, and increased global exchange of clinical and genetic data. However, more than half of individuals suspected to have a rare disease lack a genetic diagnosis.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
Background: Evidence indicates a negative link between glucosamine and age-related cognitive decline and sarcopenia. However, the causal relationship remains uncertain. This study aims to verify whether glucosamine is causally associated with cognitive function and sarcopenia.
View Article and Find Full Text PDFJ Res Med Sci
November 2024
Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia.
Background: The study aimed to detect the association between insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) and interleukin-6 (IL-6) polymorphisms among type 2 diabetes mellitus (T2DM).
Materials And Methods: This study involved 500 individuals; 250 obese DM cases and 250 healthy controls. The polymerase chain reaction restriction fragment length polymorphism was used to identify the genotype of the IGF2BP2 gene for the small nucleoproteins rs4402960 (G>T) and small nucleoproteins rs800795 (G>C).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!