Caveolae are Omega-shaped vesicular structures postulated to play a role in transvascular protein transport. Studies on mice lacking endothelial caveolae, caveolin-1 knockout (Cav-1-KO) mice, indicate increased macromolecular transport rates. This was postulated to be due to the appearance of an alternative pathway. The present study tested whether an alternative pathway had appeared in Cav-1-KO mice. Male Cav-1-KO (n=12) and male control mice (n=13) were intubated and anesthetized using 2% isoflurane. 125I-labeled albumin, 131I-labeled immunoglobulin M (IgM), and polydisperse FITC-Ficoll were administered intravenously. During tracer administration, a 90-min peritoneal dialysis dwell was performed. Clearance of tracers to dialysate and permeability-surface area product for glucose were assessed. Transvascular protein transport was higher in Cav-1-KO compared with control mice. Albumin clearance from plasma to peritoneum was 0.088+/-0.008 microl/min in control and 0.179+/-0.012 microl/min in Cav-1-KO (P=0.001) mice. IgM clearance was 0.049+/-0.003 and 0.083+/-0.010 microl/min in control and Cav-1-KO mice, respectively (P=0.016). Ficoll clearance was increased in Cav-1-KO mice. In conclusion, the lack of caveolae in Cav-1-KO mice resulted in a marked increase in macromolecular transport. A two-pore analysis of the Ficoll clearance data revealed that the higher transport rate in Cav-1-KO mice was not compatible with the appearance of an alternative pathway for macromolecular transport. In contrast, the higher transperitoneal protein and Ficoll clearance is consistent with passive porous transport through an unperturbed two-pore system, presumably at an elevated capillary hydraulic pressure. Alternatively, the data may be explained by reductions in the selectivity of the endothelial glycocalyx, leading to an increased capillary hydraulic conductivity and large solute filtration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.01364.2005 | DOI Listing |
Alzheimers Dement
October 2024
Department of Neurology, University Medical Center and the German Center for Neurodegenerative Diseases (DZNE), Georg-August University, Goettingen, Germany.
Introduction: Cellular prion protein (PrP) was implicated in amyloid beta (Aβ)-induced toxicity in Alzheimer's disease (AD), but the precise molecular mechanisms involved in this process are unclear.
Methods: Double transgenic mice were generated by crossing Prnp knockout (KO) with 5xFAD mice, and light-sheet microscopy was used for whole brain tissue analyses. PrP-overexpressing cells were developed for in vitro studies, and microscopy was used to assess co-localization of proteins of interest.
J Neuroimmunol
March 2024
Departments of Anatomy and Cell Biology, University of Illinois at Chicago College of Medicine, USA. Electronic address:
Blood-brain barrier (BBB) permeability can cause neuroinflammation and cognitive impairment. Caveolin-1 (Cav-1) critically regulates BBB permeability, but its influence on the BBB and consequent neurological outcomes in respiratory viral infections is unknown. We used Cav-1-deficient mice with genetically encoded fluorescent endothelial tight junctions to determine how Cav-1 influences BBB permeability, neuroinflammation, and cognitive impairment following respiratory infection with mouse adapted (MA10) SARS-CoV-2 as a model for COVID-19.
View Article and Find Full Text PDFJ Physiol Biochem
February 2024
Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
Lipotoxicity-induced pancreatic β cell damage is a strong predictor of type 2 diabetes mellitus (T2DM). Our previous work showed that Caveolin-1 (Cav-1) depletion decreased β-cell apoptosis and improved β-cell viability. Further microarray analysis indicated significant changes in the expression of genes related to fatty acid metabolism and inflammation.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2024
Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
The ionotropic purinergic P2X7 receptor responds to extracellular ATP and can trigger proinflammatory immune signaling in macrophages. Caveolin-1 (Cav-1) is known to modulate functions of macrophages and innate immunity. However, it is unknown how Cav-1 modulates P2X7 receptor activity in macrophages.
View Article and Find Full Text PDFLeukocyte infiltration of the CNS can contribute to neuroinflammation and cognitive impairment. Brain endothelial cells regulate adhesion, activation, and diapedesis of T cells across the blood-brain barrier (BBB) in inflammatory diseases. The integral membrane protein Caveolin-1 (Cav-1) critically regulates BBB permeability, but its influence on T cell CNS infiltration in respiratory viral infections is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!