Rutaecarpine is the main active alkaloid of the herbal medicine, Evodia rutaecarpa. To identify the major human cytochrome P450 (P450) participating in rutaecarpine oxidative metabolism, human liver microsomes and bacteria-expressed recombinant human P450 were studied. In liver microsomes, rutaecarpine was oxidized to 10-, 11-, 12-, and 3-hydroxyrutaecarpine. Microsomal 10- and 3-hydroxylation activities were strongly inhibited by ketoconazole. The 11- and 12-hydroxylation activities were inhibited by alpha-naphthoflavone, quinidine, and ketoconazole. These results indicated that multiple hepatic P450s including CYP1A2, CYP2D6, and CYP3A4 participate in rutaecarpine hydroxylations. Among recombinant P450s, CYP1A1 had the highest rutaecarpine hydroxylation activity. Decreased metabolite formation at high substrate concentration indicated that there was substrate inhibition of CYP1A1- and CYP1A2-catalyzed hydroxylations. CYP1A1-catalyzed rutaecarpine hydroxylations had V(max) values of 1,388 to approximately 1,893 pmol/min/nmol P450, K(m) values of 4.1 to approximately 9.5 microM, and K(i) values of 45 to approximately 103 microM. These results indicated that more than one molecule of rutaecarpine is accessible to the CYP1A active site. The major metabolite 10-hydroxyrutaecarpine decreased CYP1A1, CYP1A2, and CYP1B1 activities with respective IC(50) values of 2.56 +/- 0.04, 2.57 +/- 0.11, and 0.09 +/- 0.01 microM, suggesting that product inhibition might occur during rutaecarpine hydroxylation. The metabolite profile and kinetic properties of rutaecarpine hydroxylation by human P450s provide important information relevant to the clinical application of rutaecarpine and E. rutaecarpa.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.105.007849DOI Listing

Publication Analysis

Top Keywords

rutaecarpine hydroxylation
12
rutaecarpine
11
oxidative metabolism
8
human cytochrome
8
cytochrome p450
8
liver microsomes
8
activities inhibited
8
rutaecarpine hydroxylations
8
human
5
p450
5

Similar Publications

The role of activated platelets in acute and chronic cardiovascular diseases (CVDs) is well established. Therefore, antiplatelet drugs significantly reduce the risk of severe CVDs. (Wu-Chu-Yu) is a well-known Chinese medicine, and rutaecarpine (Rut) is a main bioactive component with substantial beneficial properties including vasodilation.

View Article and Find Full Text PDF

Context: Rutaecarpine is an active indoloquinazoline alkaloid ingredient originating from Evodia rutaecarpa (Wu-zhu-yu in Chinese), which possesses a variety of effects. However, its metabolism has not been investigated thoroughly yet.

Objective: This study develops a highly sensitive and effective method for detection and characterization of the metabolites of rutaecarpine in Sprague-Dawley (SD) rats.

View Article and Find Full Text PDF

1. Rutaecarpine, a quinolone alkaloid isolated from the unripe fruit of Evodia rutaecarpa, is one of the main active components used in a variety of clinical applications, including the treatment of hypertension and arrhythmia. However, its hepatotoxicity has also been reported in recent years.

View Article and Find Full Text PDF

Although rutaecarpine, an alkaloid originally isolated from the unripe fruit of Evodia rutaecarpa, has been reported to reduce the systemic exposure of caffeine, the mechanism of this phenomenon is unclear. We investigated the microsomal enzyme activity using hepatic S-9 fraction and the plasma concentration-time profiles and urinary excretion of caffeine and its major metabolites after an oral administration of caffeine in the presence and absence of rutaecarpine in rats. Following oral administration of 80 mg/kg rutaecarpine for three consecutive days, caffeine (20 mg/kg) was given orally.

View Article and Find Full Text PDF

Rutaecarpine is an alkaloid isolated from the medicinal herb Evodia rutaecarpa. This study was to evaluate the elimination pathway of rutaecarpine in rat feces and urine. Rutaecarpine and its metabolites (3-, 10-, 11- and 12-hydroxyrutaecarpine) in urine were measured after incubation with beta-glucuronidase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!