The UCSC Known Genes.

Bioinformatics

Center for Biomolecular Science and Engineering, School of Engineering, University of California Santa Cruz Santa Cruz, CA 95064, USA.

Published: May 2006

The University of California Santa Cruz (UCSC) Known Genes dataset is constructed by a fully automated process, based on protein data from Swiss-Prot/TrEMBL (UniProt) and the associated mRNA data from Genbank. The detailed steps of this process are described. Extensive cross-references from this dataset to other genomic and proteomic data were constructed. For each known gene, a details page is provided containing rich information about the gene, together with extensive links to other relevant genomic, proteomic and pathway data. As of July 2005, the UCSC Known Genes are available for human, mouse and rat genomes. The Known Genes serves as a foundation to support several key programs: the Genome Browser, Proteome Browser, Gene Sorter and Table Browser offered at the UCSC website. All the associated data files and program source code are also available. They can be accessed at http://genome.ucsc.edu. The genomic coverage of UCSC Known Genes, RefSeq, Ensembl Genes, H-Invitational and CCDS is analyzed. Although UCSC Known Genes offers the highest genomic and CDS coverage among major human and mouse gene sets, more detailed analysis suggests all of them could be further improved.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btl048DOI Listing

Publication Analysis

Top Keywords

ucsc genes
20
genomic proteomic
8
human mouse
8
ucsc
6
genes
6
data
5
genes university
4
university california
4
california santa
4
santa cruz
4

Similar Publications

Background: As a member of the tumor necrosis factor (TNF) superfamily, tumor necrosis factor superfamily member 4 (TNFSF4) is expressed on antigen-presenting cells and activated T cells by binding to its receptor TNFRSF4. However, tumorigenicity of TNFSF4 has not been studied in pan-cancer. Therefore, comprehensive bioinformatics analysis of pan-cancer was performed to determine the mechanisms through which TNFSF4 regulates tumorigenesis.

View Article and Find Full Text PDF

Background: Altered gene expression in cancers holds great potential to improve the diagnostics and differentiation of primary and metastatic liver cancers. In this study, the expression of the protein-coding genes ring finger protein 135 (), ephrin-B2 (), ring finger protein 125 (), homeobox-C 4 (), actin-binding LIM protein 1 () and oncostatin M receptor () and the long non-coding RNAs (lncRNA) prospero homeobox 1 antisense RNA 1 () and leukemia inhibitory factor receptor antisense RNA 1 () was investigated in hepatocellular carcinoma, cholangiocarcinoma, colorectal liver metastases and pancreatic ductal adenocarcinoma liver metastases.

Methods: This study included 149 formalin-fixed, paraffin-embedded samples from 80 patients.

View Article and Find Full Text PDF

Background: Glucose metabolism in breast cancer has a potential effect on tumor progression and is related to the immune microenvironment. Thus, this study aimed to develop a glucose metabolism-tumor microenvironment score to provide new perspectives on breast cancer treatment.

Method: Data were acquired from the Gene Expression Omnibus and UCSC Xena databases, and glucose-metabolism-related genes were acquired from the Gene Set Enrichment Analysis database.

View Article and Find Full Text PDF

CYFIP2: potential pancreatic cancer biomarker and immunotherapeutic target.

Discov Oncol

December 2024

The First Affiliated Hospital of Nanchang University, Nanchang University, 17 Yongwai Zhengjie, Donghu District, Nanchang, 330006, People's Republic of China.

Objective: It has been shown that the CYFIP2 (Cytoplasmic FMR1-interacting protein 2) gene is apoptosis p53-dependent and is associated with poor prognosis in malignant tumors such as gastric cancer and other and cervical cancer. However, the prognostic potential of CYFIP2 in pancreatic cancer remains unclear. In this work, we first explain the great potential of CYFIP2 malignant progression from a broader perspective (pan-cancer) and confirm its oncogenic value in pancreatic cancer.

View Article and Find Full Text PDF

Pan-cancer analysis shows that BCAP31 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types.

Front Immunol

December 2024

Department of Otolaryngology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.

Article Synopsis
  • BCAP31 is a transmembrane protein primarily found in the endoplasmic reticulum that may be involved in cancer development, though its exact role is not fully known.
  • Researchers gathered data on BCAP31 expression from databases and found that higher levels of BCAP31 are associated with worse cancer prognosis.
  • The study investigated various factors like immune cell infiltration, drug responses, and conducted experiments on cell lines to understand BCAP31's functions and impact on cancer biology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!