Ageing is associated with a decrease in the brain content of omega-3 polyunsaturated fatty acids (PUFA), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and with decreased neuroplasticity. The glutamate receptor subunits GluR2 and NR2B play a significant role in forebrain synaptic plasticity. We investigated GluR2 and NR2B in the aged prefrontal cortex, hippocampus and striatum, and tested if treatment with a preparation containing EPA and DHA can reverse age-related changes. The study compared adult and old (3-4 and 24-26 month) rats, and the latter were fed a standard diet or a diet supplemented for 12 weeks with omega-3 PUFA at 270mg/kg/day (ratio EPA to DHA 1.5:1). Ageing was associated with decreases in the GluR2 and NR2B subunits in all structures. These decreases were fully reversed by omega-3 PUFA supplementation. Age-related changes in the phospholipid PUFA content were also seen. Decreases in DHA were mostly corrected by supplementation. This study supports the neuroprotective effect of omega-3 fatty acids in brain ageing, and illustrates specific mechanisms underlying this effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurobiolaging.2006.01.002 | DOI Listing |
Laryngoscope Investig Otolaryngol
October 2023
ENT and Head and Neck Research Center The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences Tehran Iran.
Objective: Despite 6%-20% of the adult population suffering from tinnitus, there is no standard treatment for it. Placenta extract has been used for various therapeutic purposes, including hearing loss. Here, we evaluate the effect of a novel neuroprotective protein composition (NPPC) extract on electrophysiological and molecular changes in the medial geniculate body (MGB) of tinnitus-induced rats.
View Article and Find Full Text PDFCells
December 2021
Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
Modulation of the endocannabinoid system has emerged as an effective approach for the treatment of many neurodegenerative and neuropsychological diseases. However, the underlying mechanisms are still uncertain. Using a repetitive mild traumatic brain injury (mTBI) mouse model, we found that there was an impairment in locomotor function and working memory within two weeks post-injury, and that treatment with MJN110, a novel inhibitor of the principal 2-arachidononyl glycerol (2-AG) hydrolytic enzyme monoacylglycerol lipase dose-dependently ameliorated those behavioral changes.
View Article and Find Full Text PDFArch Biochem Biophys
October 2020
Department of Zoology and Developmental Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China. Electronic address:
Purpose: To explore genistein, the most active component of soy isoflavones, on viability, expression of estrogen receptor (ER) subtypes, choline acetyltransferase (ChAT), and glutamate receptor subunits in amyloid peptide 25-35-induced hippocampal neurons, providing valuable data and basic information for neuroprotective effect of genistein in Aβ-induced neuronal injury.
Methods: We established an in vitro model of Alzheimer's disease by exposing primary hippocampal neurons of newborn rats to amyloid peptide 25-35 (20 μM) for 24 h and observing the effects of genistein (10 μM, 3 h) on viability, expression of ER subtypes, ChAT, NMDA receptor subunit NR2B and AMPA receptor subunit GluR2 in Aβ-induced hippocampal neurons.
Results: We found that amyloid peptide 25-35 exposure reduced the viability of hippocampal neurons.
J Neuroinflammation
June 2020
Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
Background: A subanesthetic dose of ketamine provides rapid and effective antidepressant effects, but the molecular mechanism remains elusive. It has been reported that overactivation of extrasynaptic GluN2B receptors is associated with the antidepressant effects of ketamine and the interaction between GluN2B and calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) is important for GluN2B localization and activity. Here, we tested whether changes of CaMKIIα and GluN2B are involved in the antidepressant effects of ketamine.
View Article and Find Full Text PDFAm J Transl Res
December 2019
Institute of Biomembrane and Biopharmaceutics, Shanghai University Shanghai 200444, China.
Changes in the electrical activities of visual and auditory thalamic-cortical regions account for the cross-modal enhancement of auditory perception following visual deprivation, but the molecular regulatory factors mediating these changes remain elusive. In this study, we showed that the expression patterns of five glutamate receptor (GluR) subunits which involved in regulating the synaptic plasticity in mouse primary visual (V1) cortex and primary auditory (A1) cortex undergone elaborate modification with layer-specificity after visual deprivation using dark-exposure (DE). The expression levels of NR1 and NR2B were increased, and those of GluR1 and NR2B in the V1 cortex were decreased after DE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!