Lipoxygenases (LO) have been implicated in asthma, immune disorders, and various cancers and as a consequence, there is great interest in isolating selective LO isozyme inhibitors. Currently, there is much use of baicalein as a selective human platelet 12-LO (12-hLO) inhibitor, however, our current steady-state inhibition data indicate that baicalein is not selective against 12-hLO versus human reticulocyte 15-LO-1 (15-hLO-1) (15/12=1.3), in vitro. However, in the presence of detergents baicalein is slightly more selective (15/12=7) as seen by the steady-state inhibition kinetics, which may imply greater selectivity in a cell-based assay but has yet to be proven. The mechanism of baicalein inhibition of 15-hLO-1 is reductive, which molecular modeling suggests is through direct binding of the catecholic moiety of baicalein to the iron. A structurally related flavonoid, apigenin, is not reductive, however, molecular modeling suggests a hydrogen bond with Thr591 may account for its inhibitor potency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2006.01.057DOI Listing

Publication Analysis

Top Keywords

baicalein selective
12
steady-state inhibition
8
reductive molecular
8
molecular modeling
8
modeling suggests
8
baicalein
6
baicalein potent
4
potent vitro
4
vitro inhibitor
4
inhibitor reticulocyte
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!