Cell-penetrating peptides (CPPs) are carriers developed to improve mammalian cell uptake of important research tools such as antisense oligonucleotides and short interfering RNAs. However, the data on CPP uptake into non-mammalian cells are limited. We have studied the uptake and antimicrobial effects of the three representative peptides penetratin (derived from a non-mammalian protein), MAP (artificial peptide) and pVEC (derived from a mammalian protein) using fluorescence HPLC in four common model systems: insect cells (Sf9), gram-positive bacteria (Bacillus megaterium), gram-negative bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae). We demonstrate that non-mammalian cells internalize CPPs and a comparison of the uptake of the peptides show that the intracellular concentration and degradation of the peptides varies widely among organisms. In addition, these CPPs showed antimicrobial activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.peptides.2006.01.006 | DOI Listing |
Curr Biol
January 2025
Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel. Electronic address:
Vertebrate oocyte polarity has been observed for two centuries and is essential for embryonic axis formation and germline specification, yet its underlying mechanisms remain unknown. In oocyte polarization, critical RNA-protein (RNP) granules delivered to the oocyte's vegetal pole are stored by the Balbiani body (Bb), a membraneless organelle conserved across species from insects to humans. However, the mechanisms of Bb formation are still unclear.
View Article and Find Full Text PDFCells
December 2024
Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy.
() genes play an important role in the proper formation of retinal cells in vertebrates, in particular horizontal, retinal ganglion and amacrine cells. However, it is not fully known how the unique and combined action of multiple gene copies leads to the induction and differentiation of specific retinal cell types. To gain new insights on how genes influence retina formation, we have examined the developmental role of , and genes during eye formation in the non-mammalian vertebrate zebrafish .
View Article and Find Full Text PDFElife
December 2024
Department of Biological Structure, University of Washington, Seattle, United States.
Retinal degeneration in mammals causes permanent loss of vision, due to an inability to regenerate naturally. Some non-mammalian vertebrates show robust regeneration, via Muller glia (MG). We have recently made significant progress in stimulating adult mouse MG to regenerate functional neurons by transgenic expression of the proneural transcription factor Ascl1.
View Article and Find Full Text PDFNPJ Aging
November 2024
Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum Q6A, Stockholm, Sweden.
Senescence is a crucial hallmark of ageing and a significant contributor to the pathology of age-related disorders. As committee members of the young International Cell Senescence Association (yICSA), we aim to synthesise recent advancements in the identification, characterisation, and therapeutic targeting of senescence for clinical translation. We explore novel molecular techniques that have enhanced our understanding of senescent cell heterogeneity and their roles in tissue regeneration and pathology.
View Article and Find Full Text PDFEur J Neurosci
December 2024
Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy.
The brain's ability to integrate sensory and motor information allows us to maintain a sense of orientation in space, a process in which head-direction cells play a key role. While these neurons have been studied extensively in mammals, their presence and function in non-mammalian species remain less understood. Here, I summarize the research work for my PhD thesis, where we explore the interpeduncular nucleus (IPN) in zebrafish, a lesser known brain region, using whole-brain electron microscopy and calcium imaging techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!