Glass slides have been modified with a multifunctional poly(ethylene glycol) (PEG)-based polymer with respect to array applications in the growing field of proteome research. We systematically investigated the stepwise synthesis of the PEG films starting from self-assembled alkyl silane monolayers via monolayer peroxidation and subsequent graft polymerization of PEG methacrylate (PEGMA). Chemical composition was examined by X-ray photoelectron spectroscopy (XPS); infrared spectroscopy provided information about order and composition of the films as well; film thickness was determined by ellipsometry; using fluorescence microscopy and again XPS, the amount of proteins adsorbed on the slides was investigated. The novel support material allows a versatile modification of the amino group surface density up to 40 nmol/cm(2) for the linkage of probe molecules. Further on, we carried out standard peptide synthesis based on the well-established 9-fluorenylmethoxycarbonyl (Fmoc) chemistry, which was monitored by UV/Vis quantification of the Fmoc deblocking and mass spectrometry. The polymer coating is stable with respect to a wide range of chemical and thermal conditions, and prevents the glass surface from unspecific protein adsorption. Finally, we applied our modified glass slides in immunoassays and thus examined specific interactions of monoclonal antibodies with appropriate peptide epitopes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2006.01.046DOI Listing

Publication Analysis

Top Keywords

protein adsorption
8
glass slides
8
novel glass
4
glass slide-based
4
slide-based peptide
4
peptide array
4
array support
4
support high
4
high functionality
4
functionality resisting
4

Similar Publications

One-step antifouling coating of polystyrene using engineered polypeptides.

J Colloid Interface Sci

January 2025

Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4 6708 WE Wageningen, The Netherlands. Electronic address:

Unwanted nonspecific adsorption caused by biomolecules influences the lifetime of biomedical devices and the sensing performance of biosensors. Previously, we have designed B-M-E triblock proteins that rapidly assemble on inorganic surfaces (gold and silica) and render those surfaces antifouling. The B-M-E triblock proteins have a surface-binding domain B, a multimerization domain M and an antifouling domain E.

View Article and Find Full Text PDF

Bacteriophages as viral predators can restrict host strains and shape the bacterial community. Conversely, bacteria also adopt diverse strategies for phage defense. Pseudomonas syringae pv.

View Article and Find Full Text PDF

The objective of this study was to substitute partially fat with pea protein isolate (PP)/rutin (Ru) complexes to produce a healthy and stable low-fat whipped cream. Ru enhanced the foam properties of PP. The Ru binding equivalent was the best at a mass ratio of PP/Ru of 64:4, the PP/Ru complexes particle size was the smallest.

View Article and Find Full Text PDF

As one of the most promising means to repair diseased tissues, stem cell therapy with immense potential to differentiate into mature specialized cells has been rapidly developed. However, the clinical application of stem-cell-dominated regenerative medicine was heavily hindered by the loss of pluripotency during the long-term in vitro expansion. Here, a composite three-dimensional (3D) graphene-based biomaterial, denoted as GO-Por-CMP@CaP, with hierarchical pore structure (micro- to macropore), was developed to guide the directional differentiation of human umbilical cord MSCs (hucMSCs) into osteoblasts.

View Article and Find Full Text PDF

Efficient and green extraction of chitin from Hermetia illucens using deep eutectic solvents and its application for rapid hemostasis.

Carbohydr Polym

March 2025

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, China. Electronic address:

Hermetia illucens, with a short growth cycle, is promising as a valuable source of chitin. However, the optimal method for extracting chitin from this insect and its application for hemostasis has not been addressed. This work employed an environmentally friendly choline chloride-lactic acid deep eutectic solvent technology to extract chitin effectively from the Hermetia illucens pupae shells, realizing one-step removal of inorganic salts and proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!