Purpose: Seizures are observed frequently in humans with diffuse neuronal migration disorders. The reeler mutant mouse also exhibits a diffuse disruption of migration, yet no pro-epileptic phenotype has been reported for this model. Whether this disparity reflects a phenotypic difference that can be used to delineate the mechanisms associated with increasing seizure susceptibility or reflects a paucity of knowledge is unclear. Consequently, this study examined whether seizure susceptibility is altered in reeler mutant mice.
Methods: In vivo (minimal electroshock delivered transcorneally) and in vitro techniques (field-potential recordings in neocortical and hippocampal brain slice preparations exposed to bicuculline methiodide) were used to determine whether the susceptibility to epileptiform activity is enhanced in reeler homozygous mice relative to controls. Adult (3-7 months) male reeler homozygotes (rl/rl) and controls (+/?) were identified based on their behavioral phenotype and were used in all experiments.
Results: Minimal electroshock revealed that rl/rl mice, compared with controls, exhibited a lower threshold for electroshock-induced seizures (4.5 +/- 0.52 vs. 6.7 +/- 0.35 mA), and a higher incidence of behavioral seizures (median seizure score, class 4 vs. class 0) when animals were subjected to a 5-mA electroshock stimulus. Additionally, neocortical and hippocampal slices from rl/rl mice were more likely to generate spontaneous epileptiform activity after bicuculline application, compared with controls, and the duration of the epileptiform events elicited in 10-30 muM bicuculline was longer in slices from rl/rl mice.
Conclusions: These data demonstrate that rl/rl mice have enhanced seizure susceptibility that is in part intrinsic to the malformed neocortex and hippocampus. Thus in contrast to prior belief, most animal models of diffuse neuronal migration disorders do exhibit a pro-epileptic phenotype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1528-1167.2006.00417.x | DOI Listing |
PLoS One
January 2025
Instituto de Microelectrónica de Sevilla (IMSE-CNM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Sevilla, Spain.
Epilepsy is a prevalent neurological disorder that affects approximately 1% of the global population. Approximately 30-40% of patients respond poorly to antiepileptic medications, leading to a significant negative impact on their quality of life. Closed-loop deep brain stimulation (DBS) is a promising treatment for individuals who do not respond to medical therapy.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:
Elucidating human cerebral cortex function is essential for understanding the physiological basis of both healthy and pathological brain states. We obtained extracellular local field potential recordings from cortical slices of neocortical tissue from refractory epilepsy patients. Multi-electrode recordings were combined with histological information, providing a two-dimensional spatiotemporal characterization of human cortical dynamics in control conditions and following modulation of the excitation/inhibition balance.
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
Departments of Neurology & Neurosurgery, and Physiology, Montreal Neurological Institute-Hospital, McGill University, 3801 University Street, Montréal, Québec, H3A 2B4, Canada.
Background: Catamenial epilepsy, which is defined as a periodicity of seizure exacerbation occurring during the menstrual cycle, has been reported in up to 70% of epileptic women. These seizures are often non-responsive to medication and our understanding of the relation between menstrual cycle and seizure generation (i.e.
View Article and Find Full Text PDFNeurol Res
January 2025
Faculty of Medicine, Department of Biophysics, Karadeniz Technical University, Trabzon, Turkey.
Introduction: We aimed to investigate the effects of central kisspeptin-10 and p234 administration on basal brain activity and epilepsy-like conditions induced by 4-aminopyridine (4-AP), as well as their roles in the electrocorticogram (ECoG) power spectrum and EEG waves.
Methods: Thirty-five male Wistar rats were divided into five groups: sham,4-AP (2.5 mg/kg i.
Clin Neurol Neurosurg
January 2025
Department of Neurology, University of Health Sciences, Sancaktepe Şehit Prof. Dr. İlhan Varank Training and Research Hospital, Istanbul, Turkey. Electronic address:
Mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most common mitochondrial disorders, typically presenting with symptoms before the age of 40. Epileptic seizures are a common manifestation, with both focal and generalized seizures being observed. EEG findings can be variable, with the most common patterns being slow background activity followed by epileptiform discharges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!