Spinocerebellar ataxia type 10 (SCA10) is a dominantly inherited disorder caused by an intronic ATTCT pentanucleotide repeat expansion. The ATXN10 gene encodes a novel protein, ataxin 10, known previously as E46L, which is widely expressed in the brain. Ataxin 10 deficiency has been shown recently to cause increased apoptosis in primary cerebellar cultures, thus implicated in SCA10 pathogenesis. The biologic functions of ataxin 10 remain largely unknown. By using yeast-two-hybrid screening of a human brain cDNA library, we identified the G-protein beta2 subunit (Gbeta2) as an ataxin 10 binding partner, and the interaction was confirmed by coimmunoprecipitation and colocalization in mammalian cells in culture. Overexpression of ataxin 10 in PC12 cells induced neurite extension and enhanced neuronal differentiation induced by nerve growth factor (NGF). Moreover, coexpression of ataxin 10 and Gbeta2 potently activated the Ras-MAP kinase-Elk-1 cascade. Dominant negative Ras or inhibitor of MEK-1/2 (U0126) aborted this activation, and blocked morphologic changes, whereas inhibition of TrkA receptor by K252a had no effects. Our data suggest that the ataxin 10-Gbeta2 interaction represents a novel mechanism for inducing neuritogenesis in PC12 cells by activating the Ras-MAP kinase-Elk-1 cascade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.20807 | DOI Listing |
Neurogenetics
January 2025
Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
Intermediate CAG repeats from 29 to 33 in the ATXN2 gene contributes to the risk of amyotrophic lateral sclerosis (ALS) in European and Asian populations. In this study, 148 ALS patients of multiethnic descent: Chinese (56.1%), Malay (24.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan.
Spinocerebellar ataxia type 3 (SCA3), caused by the abnormal expansion of polyglutamine (polyQ) in the ataxin-3 protein, is one of the inherited polyQ neurodegenerative diseases that share similar genetic and molecular features. Mutant polyQ-expanded ataxin-3 protein is prone to aggregation in affected neurons and is predominantly degraded by autophagy, which is beneficial for neurodegenerative disease treatment. Not only does mutant polyQ-expanded ataxin-3 increase susceptibility to oxidative cytotoxicity, but it also hampers antioxidant potency in neuronal cells.
View Article and Find Full Text PDFPLoS One
December 2024
Neuroscience, Merck Research Laboratories, Merck & Co., Inc., Rahway, New Jersey, United States of America.
Ataxin-2 is a protein containing a polyQ extension and intermediate length of polyQ extensions increases the risk of Amyotrophic Lateral Sclerosis (ALS). Down-regulation of Ataxin-2 has been shown to mitigate TDP-43 proteinopathy in ALS models. To identify alternative therapeutic targets that can mitigate TDP-43 toxicity, we examined the interaction between Ataxin-2 and TDP-43.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Laboratory of Molecular Neurodegeneration, Peter the Great St Petersburg State Polytechnical University, St Petersburg, 195251, Russian Federation. Electronic address:
The expansion of glutamine residue track (polyQ) within soluble proteins (Q proteins) is responsible for nine autosomal-dominant genetic neurodegenerative disorders. These disorders develop when polyQ expansion exceeds a specific pathogenic threshold (Q) which is unique for each disease. However, the pathogenic mechanisms associated with the variability of Q within the family of Q proteins are poorly understood.
View Article and Find Full Text PDFPLoS One
December 2024
Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Investigación Sanitaria de Canarias (IISC), La Laguna, Tenerife, Spain.
Spinocerebellar ataxia type 3 (SCA3) is a cureless neurodegenerative disease recognized as the most prevalent form of dominantly inherited ataxia worldwide. The main hallmark of SCA3 is the expansion of a polyglutamine tract located in the C-terminal of Ataxin-3 (or ATXN3) protein, that triggers the mis-localization and toxic aggregation of ATXN3 in neuronal cells. The propensity of wild type and polyglutamine-expanded ATXN3 proteins to aggregate has been extensively studied over the last decades.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!