Extracellular matrix molecules are involved in the cellular functions of proliferation, migration, morphological differentiation, and synaptic plasticity. One candidate molecule of the extracellular matrix is the chondroitin sulfate proteoglycan neurocan. To determine whether neurocan expression is regulated by neuronal activity in the adult rat brain, we studied changes in hippocampal neurocan mRNA and protein expression following electrical stimulation of the perforant pathway in urethane-anesthetized rats. After 24 h of intermittent, unilateral 20 Hz stimulation, in situ hybridization revealed increased neurocan mRNA in glial fibrillary acidic protein (GFAP)-positive astrocytes bilaterally in all hippocampal subfields. These changes were quantified in the dentate molecular layer, the termination zone of the perforant pathway, using laser microdissection in combination with quantitative reverse transcription-polymerase chain reaction (RT-PCR). Immediately after 24 h stimulation, a six-fold upregulation was detected, which returned to control levels by 3 days post-stimulation. Neurocan immunoreactivity was similarly upregulated bilaterally. Immunostaining intensity reached a maximum by 4 days and returned to control levels by 14 days. The pattern of neurocan expression in the hippocampus depended on the intensity and duration of electrical stimulation. Under conditions of less intense afferent stimulation (4-24 h of 2.0 Hz paired-pulse stimulation, interpulse interval 40 ms), increases in neurocan mRNA and immunoreactivity were restricted to the ipsilateral termination zone of the stimulated perforant pathway. This layer-specific neurocan upregulation was not affected by intraperitoneal application of the NMDA-receptor antagonist MK-801. In conclusion, our data indicate that synaptic activity regulates the astrocytic expression of neurocan in a graded manner.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.20329DOI Listing

Publication Analysis

Top Keywords

neurocan mrna
12
perforant pathway
12
neurocan
10
astrocytic expression
8
expression neurocan
8
adult rat
8
extracellular matrix
8
neurocan expression
8
electrical stimulation
8
termination zone
8

Similar Publications

Neurocan regulates axon initial segment organization and neuronal activity.

Matrix Biol

January 2025

German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany. Electronic address:

The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability.

View Article and Find Full Text PDF

Perineuronal nets (PNNs) are mesh-like structures on the surfaces of parvalbumin-expressing inhibitory and other neurons, and consist of proteoglycans such as aggrecan, brevican, and neurocan. PNNs regulate the Excitatory/Inhibitory (E/I) balance in the brain and are formed at the closure of critical periods of plasticity during development. PNN formation is disrupted in Fragile X Syndrome, which is caused by silencing of the fragile X messenger ribonucleoprotein 1 (Fmr1) gene and loss of its protein product FMRP.

View Article and Find Full Text PDF

Chemotherapy with temozolomide (TMZ) is an essential part of anticancer therapy used for malignant tumors (mainly melanoma and glioblastoma); however, the long-term effects on patient health and life quality are not fully investigated. Considering that tumors often occur in elderly patients, the present study was conducted on long-term (4 months) treatment of adult Wistar rats (9 months old, n=40) with TMZ and/or dexamethasone (DXM) to investigate potential behavioral impairments or morphological and molecular changes in their brain tissues. According to the elevated plus maze test, long-term use of TMZ affected the anxiety of the adult Wistar rats, although no significant deterioration of brain morphology or cellular composition of the brain tissue was revealed.

View Article and Find Full Text PDF

Blood vessel remodeling in the cerebral cortex induced by binge alcohol intake in mice.

Toxicol Res

January 2023

Laboratory of Environmental and Health Sciences, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-Ku, Sendai, Miyagi 9818558 Japan.

Unlabelled: Ethanol is toxic to the brain and causes various neurological disorders. Although ethanol can directly exert toxicity on neurons, it also acts on other cell types in the central nervous system. Blood vessel endothelial cells interact with, and are affected by blood ethanol.

View Article and Find Full Text PDF

Thoracic spinal cord injury (SCI) results in urinary dysfunction, which majorly affects the quality of life of SCI patients. Abnormal sprouting of lumbosacral bladder afferents plays a crucial role in this condition. Underlying mechanisms may include changes in expression of regulators of axonal growth, including chondroitin sulphate proteoglycans (CSPGs), myelin-associated inhibitors (MAIs) and repulsive guidance molecules, known to be upregulated at the injury site post SCI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!