Agropyron cristatum (2n = 4x = 28, PPPP) possesses potentially valuable traits that could be used in wheat (Triticum aestivum) improvement through interspecific hybridization. Homoeologous pairing between wheat chromosomes and P chromosomes added to wheat in a set of wheat - A. cristatum addition lines was assessed. First, the Ph-suppressing effect of P chromosomes (except 7P) was analyzed. It was concluded that this system is polygenic with no major gene, and consequently, has no prospect in the transfer of alien genes from wild relatives. In a second step, the potential of the deletion ph1b of the Ph1 gene for inducing P-ABD pairing was evaluated. Allosyndetic associations between P and ABD genomes are very rare. This very low level of pairing is likely due to divergence in the repeated sequences between Agropyron and wheat genomes. Development of translocation lines using ionizing radiation seems to be a more suitable technique than homoeologous recombination to exploit the A. cristatum genome in wheat improvement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/g05-074 | DOI Listing |
Vavilovskii Zhurnal Genet Selektsii
November 2024
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
Synthetic intergeneric amphydiploids and genome-substituted wheat forms are an important source for transferring agronomically valuable genes from wild species into the common wheat (Triticum aestivum L.) genome. They can be used both in academic research and for breeding purposes as an original material for developing wheat-alien addition and substitution lines followed by translocation induction with the aid of irradiation or nonhomologous chromosome pairing.
View Article and Find Full Text PDFPlant J
November 2024
Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
A series of polyploidizations in higher-order polyploids is the main event affecting gene content in a genome. Each polyploidization event can lead to massive functional divergence because of the subsequent decrease in selection pressure on duplicated genes; however, the causal relationship between multiple rounds of polyploidization and the functional divergence of duplicated genes is poorly understood. We focused on the Triticum-Aegilops complex lineage and compared selection pressure before and after tetraploidization and hexaploidization events.
View Article and Find Full Text PDFTheor Appl Genet
October 2024
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
Two small fragment translocation lines (T4DS·4DL-4EL and T5AS·5AL-4EL) showed high resistance to stripe rust and resistance gene Yr4EL was localized to an about 35 Mb region at the end of chr arm 4EL. Stripe rust, caused by the fungus Puccinia striiformis f. sp.
View Article and Find Full Text PDFTheor Appl Genet
October 2024
Key Laboratory of Herbage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, 010020, Inner Mongolia, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!