Parp-1 and Parp-2 are activated by DNA breaks and have been implicated in the repair of DNA single-strand breaks (SSB). Their involvement in double-strand break (DSB) repair mediated by homologous recombination (HR) or nonhomologous end joining (NHEJ) remains unclear. We addressed this question using chicken DT40 cells, which have the advantage of carrying only a PARP-1 gene but not a PARP-2 gene. We found that PARP-1(-/-) DT40 mutants show reduced levels of HR and are sensitive to various DSB-inducing genotoxic agents. Surprisingly, this phenotype was strictly dependent on the presence of Ku, a DSB-binding factor that mediates NHEJ. PARP-1/KU70 double mutants were proficient in the execution of HR and displayed elevated resistance to DSB-inducing drugs. Moreover, we found deletion of Ligase IV, another NHEJ gene, suppressed the camptothecin of PARP-1(-/-) cells. Our results suggest a new critical function for Parp in minimizing the suppressive effects of Ku and the NHEJ pathway on HR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1422167PMC
http://dx.doi.org/10.1038/sj.emboj.7601015DOI Listing

Publication Analysis

Top Keywords

homologous recombination
8
parp-1 protects
4
protects homologous
4
recombination interference
4
interference ligase
4
ligase vertebrate
4
vertebrate cells
4
cells parp-1
4
parp-1 parp-2
4
parp-2 activated
4

Similar Publications

Translationally controlled tumor protein (TCTP) is a well conserved and ubiquitously expressed multifunctional protein found in many organisms and is involved in many pathophysiological processes like cell proliferation, differentiation, development and cell death. The role of TCTP in anti-apoptosis and cancer metastasis makes it a promising candidate for cancer therapy. Dictyostelium discoideum, a protist, has two isoforms (TCTP1 and TCTP2, now referred to as TPT1 and TPT2) of which we have earlier elucidated TPT1.

View Article and Find Full Text PDF

Bacteria encode various DNA repair pathways to maintain genome integrity. However, the high degree of homology between DNA repair proteins or their domains hampers accurate identification. Here, we describe a stringent search strategy to identify DNA repair proteins and provide a systematic analysis of taxonomic distribution and co-occurrence of DNA repair proteins involved in RecA-dependent homologous recombination.

View Article and Find Full Text PDF

Bacterial genomes primarily diversify via gain, loss, and rearrangement of genetic material in their flexible accessory genome. Yet the dynamics of accessory genome evolution are very poorly understood, in contrast to the core genome where diversification is readily described by mutations and homologous recombination. Here, we tackle this problem for the case of very closely related genomes.

View Article and Find Full Text PDF

Elucidating the expression and role of cGAS in pan-cancer using integrated bioinformatics and experimental approaches.

BMC Cancer

January 2025

Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.

cGAS plays an important role in regulating both tumor immune responses and DNA damage repair. Nevertheless, there was little research that comprehensively analyzed the correlation between cGAS and the tumor microenvironment, immune cell infiltration, and DNA damage repair in different cancers. In this study, The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia (CCLE) data were used to analyze the mRNA expression and genomic alterations of cGAS in pan-cancer.

View Article and Find Full Text PDF

C1QBP exhibits heightened expression across a spectrum of tumours, thereby fostering their proliferation and metastasis, rendering it a pivotal therapeutic target. Nevertheless, to date, no pharmacological agents capable of directly targeting and inducing the degradation of C1QBP have been identified. In this study, we have unveiled a new peptide, PDBAG1, derived from the precursor protein GPD1, employing a peptidomics-based drug screening strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!