Oncogenic RAS expression occurs in up to 40% of multiple myeloma (MM) cases and correlates with aggressive disease. Since activated RAS induces cyclooxygenase-2 (cox-2) expression in other tumor models, we tested a role for cox-2 in mutant RAS-containing MM cells. We used the ANBL-6 isogenic MM cell lines in which the IL-6-dependent parental line becomes cytokine independent following transfection with mutated N-RAS or K-RAS. Both mutated N-RAS- and K-RAS-expressing ANBL-6 cells demonstrated a selective up-regulation of cox-2 expression and enhanced secretion of PGE2, a product of cox-2. Furthermore, in 3 primary marrow specimens, which contained MM cells expressing mutated RAS, 15% to 40% of tumor cells were positive for cox-2 expression by immunohistochemistry. We used cox-2 inhibitors, NS398 and celecoxib, and neutralizing anti-PGE2 antibody to test whether cox-2/PGE2 was involved in the aggressive phenotype of MM ANBL-6 cells containing mutated RAS. Although these interventions had no effect on IL-6-independent growth or adhesion to marrow stromal cells, they significantly inhibited the enhanced binding of mutant RAS-containing MM cells to fibronectin and the enhanced resistance to melphalan. These results indicate a selective induction of cox-2 in MM cells containing RAS mutations, which results in heightened binding to extracellular matrix protein and chemotherapeutic drug resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1895799 | PMC |
http://dx.doi.org/10.1182/blood-2005-09-3926 | DOI Listing |
Mar Biotechnol (NY)
January 2025
College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, Xianyang, 712100, Shaanxi, China.
Fucoidan from Apostichopus japonicus (Aj-FUC) has shown anti-inflammatory activity, whereas its mechanism was not explicated. This study investigated the anti-inflammatory potential and mechanism of the fucoidan from green and purple A. japonicus (G-FUC and P-FUC) in lipopolysaccharide (LPS)-treated RAW264.
View Article and Find Full Text PDFParasitol Res
January 2025
Department of Parasitology, Chung Shan Medical University, Taichung, 402, Taiwan.
Prostaglandin E2 (PGE-2) is synthesised by cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase 1 (mPGES-1). PGE-2 exhibits pro-inflammatory properties in inflammatory conditions. However, there remains limited understanding of the COX-2/mPGES-1/PGE-2 pathway in Angiostrongylus cantonensis-induced meningoencephalitis.
View Article and Find Full Text PDFIran J Pharm Res
October 2024
Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Cyclooxygenases (COX) play a pivotal role in inflammation and are responsible for the production of prostaglandins (PGs). Two types of COXs have been identified as key biological targets for drug design: Constitutive COX-1 and inducible COX-2. Nonsteroidal anti-inflammatory drugs (NSAIDs) target COX-1, while selective COX-2 inhibitors are designed for COX-2.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
Bromoxynil (BML) is a toxic herbicide that is reported to cause various organ toxicities. However, there is not a single investigation conducted to elucidate the adverse impacts of BML on hepatic tissues at different dose concentrations. Therefore, the current investigation was planned to assess the deleterious effects of BML on liver against different dose concentrations.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. Electronic address:
Rotavirus is the most important cause of severe gastroenteritis in infants and children worldwide. This virus causes an increase in inflammatory responses by increasing cellular oxidative stress and the expression and activity of the transcription factor NF-κB and COX-2. As a result of NF-κB activation, the expression of inflammatory cytokines also increases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!