Functional endothelin-1 receptors in rat astrocytoma C6.

Eur J Pharmacol

Laboratoire d'Immuno-Pharmacologie moléculaire, CNRS et Université Paris VII, Institut Cochin de Génétique Moléculaire (ICGM), France.

Published: March 1991

Rat astrocytoma C6 cells have been recently identified as target cells for ET-1, which stimulates inositol lipid turnover in these cells. It is shown here that binding of ET-1 to high-affinity receptors on C6 cells leads to 40-45% inhibition of isoproterenol-induced intracellular cyclic AMP accumulation, as well as to stimulation of inositol lipid turnover, both effects characterized by an absolute requirement of extracellular calcium. Moreover, ET-1, which has been generally reported to have a mitogenic effect on a variety of target cells including primary rat astrocytes, is shown here to stimulate or, alternatively, inhibit DNA synthesis in C6 cells, depending on the subclone considered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0922-4106(05)80018-5DOI Listing

Publication Analysis

Top Keywords

rat astrocytoma
8
target cells
8
inositol lipid
8
lipid turnover
8
cells
6
functional endothelin-1
4
endothelin-1 receptors
4
receptors rat
4
astrocytoma rat
4
astrocytoma cells
4

Similar Publications

The association of necrosis in tumors with poor prognosis implies a potential tumor-promoting role. However, the mechanisms underlying cell death in this context and how damaged tissue contributes to tumor progression remain unclear. Here, we identified p38 mitogen-activated protein kinases (p38 MAPK, a.

View Article and Find Full Text PDF

Significance: Personalized photodynamic therapy (PDT) treatment planning requires knowledge of the spatial and temporal co-localization of photons, photosensitizers (PSs), and oxygen. The inter- and intra-subject variability in the photosensitizer concentration can lead to suboptimal outcomes using standard treatment plans.

Aim: We aim to quantify the PS spatial variation in tumors and its effect on PDT treatment planning solutions.

View Article and Find Full Text PDF

This study aimed to investigate β-Caryophyllene (BCA) pharmacokinetics as well as the potential antitumor activity and mechanism of action of BCA and eugenol (EU), alone or in combination, in U87 glioblastoma (GB) cells. The BCA pharmacokinetic was studied by evaluating its concentration profiles in rat blood and cerebrospinal fluid after oral and intravenous administration. EU and BCA antitumor mechanisms were assessed by comparing their effects in U87 GB cells and non-tumoral HMC3 cells.

View Article and Find Full Text PDF

Glioblastomas (GBM) are malignant tumours with poor prognosis. Treatment involves chemotherapy and/or radiotherapy; however, there is currently no standard treatment for recurrence, and prognosis remains unfavourable. Inflammatory mediators and microRNAs (miRNAs) influence the aggressiveness of GBM, being involved in the communication with the cells of the tumour parenchyma, including microglia/macrophages, and maintaining an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Monitoring of cancer ferroptosis with [F]hGTS13, a system xc- specific radiotracer.

Theranostics

January 2025

Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!