The effects of the destruction of the medial preoptic area and the lateral preoptic area with N-methyl-d-aspartic acid on sleep-wakefulness, brain temperature and thermoregulation were studied in two groups of male Wistar rats. Electroencephalogram, electrooculogram and electromyogram, along with brain temperature, were recorded for 3 days, prior to the destruction of the medial preoptic area and the lateral preoptic area, and on the 7th and 21st days after the destruction of these areas. The thermoregulatory capacity of the rats was assessed by recording their brain temperature when they were exposed to severe cold (5+/-1 degrees C) and heat (37+/-1 degrees C) before and after the lesion. Though sleep was decreased after the destruction of both the medial preoptic area and the lateral preoptic area, paradoxical sleep was reduced only by the destruction of the medial preoptic area. Decrease in sleep after the medial preoptic area lesion was brought about by a decrease in the duration of the slow wave sleep episodes and the frequency of paradoxical sleep episodes. Decrease in sleep after the lateral preoptic area lesion was brought about by a decrease in the frequency of slow wave sleep episodes. There was a significant increase in brain temperature after the medial preoptic area lesion but not after the lateral preoptic area lesion. The rats with lesion in the medial preoptic area showed deficits in thermoregulation on exposure to cold, while those with the lateral preoptic area lesion showed deficits in heat defense ability. The present findings suggest that the medial preoptic area and the lateral preoptic area regulate sleep by different modalities and that there is an anatomical segregation of heat and cold defense functions within the basal forebrain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2006.01.003DOI Listing

Publication Analysis

Top Keywords

preoptic area
60
lateral preoptic
32
medial preoptic
32
area lesion
20
preoptic
16
destruction medial
16
area lateral
16
brain temperature
16
area
15
sleep episodes
12

Similar Publications

The effects of social loss and isolation on partner odor investigation and dopamine and oxytocin receptor expression in female prairie voles.

Neuropharmacology

January 2025

Neurosciences PhD Program, School of Pharmacy, University of Kansas, Lawrence, KS, United States; Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States. Electronic address:

In humans, grief is characterized by intense sadness, intrusive thoughts of the deceased, and intense longing for reunion with the deceased. Human fMRI studies show hyperactivity in emotional pain and motivational centers of the brain when an individual is reminded of a deceased attachment figure, but the molecular underpinnings of these changes in activity are unknown. Prairie voles (Microtus ochrogaster), which establish lifelong social bonds between breeding pairs, also display distress and motivational shifts during periods of prolonged social loss, providing a model to investigate these behavioral and molecular changes at a mechanistic level.

View Article and Find Full Text PDF

Maternally activated connections of the ventral lateral septum reveal input from the posterior intralaminar thalamus.

Brain Struct Funct

January 2025

Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary.

The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv.

View Article and Find Full Text PDF

While hypothalamic kisspeptin (KP) neurons play well-established roles in the estrogen-dependent regulation of reproduction, little is known about extrahypothalamic KP-producing (KP) neurons of the lateral septum. As established previously, expression in this region is low and regulated by estrogen receptor- and GABA receptor-dependent mechanisms. Our present experiments on knock-in mice revealed that transgene expression in the LS begins at P33-36 in females and P40-45 in males and is stimulated by estrogen receptor signaling.

View Article and Find Full Text PDF

Hypothalamic SIRT1-mediated regulation of the hormonal trigger of ovulation and its repression in energy deficit.

Metabolism

December 2024

Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

Female reproduction is highly sensitive to body energy stores; persistent energy deficit, as seen in anorexia or strenuous exercise, is known to suppress ovulation via ill-defined mechanisms. We report herein that hypothalamic SIRT1, a key component of the epigenetic machinery that links nutritional status and puberty onset via modulation of Kiss1, plays a critical role in the control of the preovulatory surge of gonadotropins, i.e.

View Article and Find Full Text PDF

This study investigated the impact of multiple nerve block methods (local anesthesia, conventional radiofrequency thermocoagulation [CRF], and pulsed radiofrequency [PRF]) on thermoregulation. Focusing on hypothalamic function, the effects of local anesthesia, CRF, and PRF on central and peripheral temperatures were analyzed and compared. Our findings revealed that all three nerve block groups cause a decrease in central temperature, with the CRF group exhibiting the most pronounced effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!