The three-dimensional structure of the neuronal calcium-sensor protein calexcitin from Loligo pealei has been determined by X-ray analysis at a resolution of 1.8A. Calexcitin is up-regulated following Pavlovian conditioning and has been shown to regulate potassium channels and the ryanodine receptor. Thus, calexcitin is implicated in neuronal excitation and plasticity. The overall structure is predominantly helical and compact with a pronounced hydrophobic core between the N and C-terminal domains of the molecule. The structure consists of four EF-hand motifs although only the first three EF hands are involved in binding calcium ions; the C-terminal EF-hand lacks the amino acids required for calcium binding. The overall structure is quite similar to that of the sarcoplasmic calcium-binding protein from Amphioxus although the sequence identity is very low at 31%. The structure shows that the two amino acids of calexcitin phosphorylated by protein kinase C are close to the domain interface in three dimensions and thus phosphorylation is likely to regulate the opening of the domains that is probably required for binding to target proteins. There is evidence that calexcitin is a GTPase and the residues, which have been implicated by mutagenesis in its GTPase activity, are in a short but highly conserved region of 3(10) helix close to the C terminus. This helix resides in a large loop that is partly sandwiched between the N and C-terminal domains suggesting that GTP binding may also require or may cause domain opening. The structure possesses a pronounced electropositive crevice in the vicinity of the 3(10) helix, that might provide an initial docking site for the triphosphate group of GTP. These findings elucidate a number of the reported functions of calexcitin with implications for neuronal signalling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2006.01.083 | DOI Listing |
Mol Cell Neurosci
January 2025
Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China. Electronic address:
Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca signaling have long been considered to play important roles in the development of various NDs.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
Institute of Brain Science, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan; Brain Research Center, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan; Digital Medicine and Smart Healthcare Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan. Electronic address:
While the etiology of schizophrenia (SZ) remains elusive, its diverse phenotypes suggest the involvement of distinct functional cortical areas, and the heritability of SZ implies the underlying genetic factors. This study aimed to integrate imaging and molecular analyses to elucidate the genetic underpinnings of SZ. We investigated the local cortical structural pattern changes in Brodmann areas (BAs) by calculating the cortical structural pattern index (SPI) using magnetic resonance imaging analysis from 194 individuals with SZ and 330 controls.
View Article and Find Full Text PDFPediatr Neurol
January 2025
Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Pediatrics Research Group, Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Pediatric Neurology Unit, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
Background: Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy associated with loss-of-function variants in the SCN1A gene. Although predominantly expressed in the central nervous system, SCN1A is also expressed in the heart, suggesting a potential link between neuronal and cardiac channelopathies. Additionally, DS carries a high risk of sudden unexpected death in epilepsy (SUDEP).
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
This study explores the potential for the synthesis of peptide nanosystems comprising spinorphin molecules (with rhodamine moiety: Rh-S, Rh-S5, and Rh-S6) conjugated with nanoparticles (AuNPs), specifically peptide Rh-S@AuNPs, peptide Rh-S5@AuNPs, and peptide Rh-S6@AuNPs, alongside a comparative analysis of the biological activities of free and conjugated peptides. The examination of the microstructural characteristics of the obtained peptide systems and their physicochemical properties constitutes a key focus of this study. Zeta (ζ) potential, Fourier transformation infrared (FTIR) spectroscopy, circular dichroism (CD), scanning electron microscopy (SEM-EDS), transmission electron microscopy (TEM), and UV-Vis spectrophotometry were employed to elucidate the structure-activity correlations of the peptide@nano AuNP systems.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department Neurology, Upper Silesian Medical Center named After Prof. Leszek Giec, ul. Ziołowa 45/47, 40-635 Katowice, Poland.
Lower back pain (LBP) is a common condition affecting primarily populations in developed countries, placing a significant burden on public health systems around the world. A high rate of pain recurrence increases the risk of developing a chronic syndrome and the occurrence of complex psychosocial and professional problems. Symptoms lasting longer than 12 weeks are associated with the risk of sleep problems, depression, and anxiety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!