The electrostatic continuum solvent model developed by [Fattebert and Gygi J. Comput. Chem. 23, 662 (2002); Int. J. Quantum Chem. 93, 139 (2003)] is combined with a first-principles formulation of the cavitation energy based on a natural quantum-mechanical definition for the surface of a solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be in remarkable agreement with that obtained by more complex algorithms relying on a large set of parameters. Our model allows for very efficient Car-Parrinello simulations of finite or extended systems in solution and demonstrates a level of accuracy as good as that of established quantum-chemistry continuum solvent methods. We apply this approach to the study of tetracyanoethylene dimers in dichloromethane, providing valuable structural and dynamical insights on the dimerization phenomenon.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2168456 | DOI Listing |
J Mol Model
January 2025
Department of Chemistry, Handique Girls' College, Guwahati , 781001, Assam, India.
Context: Cation-π and cation-lone pair interactions between 3d-metal (II) ions [Fe(II), Co(II), Ni(II) and Cu(II)] and furan are explored in the formation of 1:1 and 1:2 type complexes. Both cation-π (IE = -192.27 to -312.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada.
The near neutral p of histidine is commonly exploited to engineer pH-sensitive biomolecules. For example, histidine mutations introduced in the complementarity-determining region (CDR) of therapeutic antibodies can enhance selectivity for antigens in the acidic microenvironment of solid tumors or increase dissociation rates in the acidic early endosomes of cells. While solvent-exposed histidines typically have a p near 6.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.
The fundamental hydrolysis behavior of tetravalent actinide cations (An) with a high charge is crucial for understanding their solution chemistry, particularly in nuclear fuel reprocessing and environmental behavior. Using Th as a reference of the An series, this work employed both the periodic model and the cluster model to calculate the first hydrolysis reaction constant (p) of the Th aqua ion and conducted a detailed evaluation of these approaches. In the periodic model, molecular dynamics (AIMD) simulations of Th in the explicit solvation environment are conducted, using metadynamics and constrained molecular dynamics to calculate p values.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
The complete active space second-order perturbation theory (CASPT2) is valuable for accurately predicting electronic structures and transition energies. However, optimizing molecular geometries in the solution phase has proven challenging. In this study, we develop analytic first-order derivatives of CASPT2 using an implicit solvation model, specifically the polarizable continuum model, within the open-source package OpenMolcas.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
University of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Str. 6, D-28359 Bremen, Germany.
To simulate the effects of high pressure on molecular and electronic structure, methods based on the polarizable continuum model have emerged as a serious contender to the conventionally employed periodic boundary conditions. In this work, we present a highly efficient integral-direct algorithm for the Gaussians On Surface Tesserae Simulate HYdrostatic Pressure (GOSTSHYP) method. We examine the efficiency of this implementation on large chains of α-d-glucose units.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!