The electrostatic continuum solvent model developed by [Fattebert and Gygi J. Comput. Chem. 23, 662 (2002); Int. J. Quantum Chem. 93, 139 (2003)] is combined with a first-principles formulation of the cavitation energy based on a natural quantum-mechanical definition for the surface of a solute. Despite its simplicity, the cavitation contribution calculated by this approach is found to be in remarkable agreement with that obtained by more complex algorithms relying on a large set of parameters. Our model allows for very efficient Car-Parrinello simulations of finite or extended systems in solution and demonstrates a level of accuracy as good as that of established quantum-chemistry continuum solvent methods. We apply this approach to the study of tetracyanoethylene dimers in dichloromethane, providing valuable structural and dynamical insights on the dimerization phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2168456DOI Listing

Publication Analysis

Top Keywords

continuum solvent
8
unified electrostatic
4
electrostatic cavitation
4
cavitation model
4
model first-principles
4
first-principles molecular
4
molecular dynamics
4
dynamics solution
4
solution electrostatic
4
electrostatic continuum
4

Similar Publications

Context: Cation-π and cation-lone pair interactions between 3d-metal (II) ions [Fe(II), Co(II), Ni(II) and Cu(II)] and furan are explored in the formation of 1:1 and 1:2 type complexes. Both cation-π (IE = -192.27 to -312.

View Article and Find Full Text PDF

Improved Structure-Based Histidine p Prediction for pH-Responsive Protein Design.

J Chem Inf Model

January 2025

Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada.

The near neutral p of histidine is commonly exploited to engineer pH-sensitive biomolecules. For example, histidine mutations introduced in the complementarity-determining region (CDR) of therapeutic antibodies can enhance selectivity for antigens in the acidic microenvironment of solid tumors or increase dissociation rates in the acidic early endosomes of cells. While solvent-exposed histidines typically have a p near 6.

View Article and Find Full Text PDF

Computational Explorations of Th First Hydrolysis Reaction Constants: Insights from Molecular Dynamics and Density Functional Theory Calculations.

J Phys Chem A

January 2025

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.

The fundamental hydrolysis behavior of tetravalent actinide cations (An) with a high charge is crucial for understanding their solution chemistry, particularly in nuclear fuel reprocessing and environmental behavior. Using Th as a reference of the An series, this work employed both the periodic model and the cluster model to calculate the first hydrolysis reaction constant (p) of the Th aqua ion and conducted a detailed evaluation of these approaches. In the periodic model, molecular dynamics (AIMD) simulations of Th in the explicit solvation environment are conducted, using metadynamics and constrained molecular dynamics to calculate p values.

View Article and Find Full Text PDF

Analytic First-Order Derivatives of CASPT2 Combined with the Polarizable Continuum Model.

J Chem Theory Comput

January 2025

Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.

The complete active space second-order perturbation theory (CASPT2) is valuable for accurately predicting electronic structures and transition energies. However, optimizing molecular geometries in the solution phase has proven challenging. In this study, we develop analytic first-order derivatives of CASPT2 using an implicit solvation model, specifically the polarizable continuum model, within the open-source package OpenMolcas.

View Article and Find Full Text PDF

To simulate the effects of high pressure on molecular and electronic structure, methods based on the polarizable continuum model have emerged as a serious contender to the conventionally employed periodic boundary conditions. In this work, we present a highly efficient integral-direct algorithm for the Gaussians On Surface Tesserae Simulate HYdrostatic Pressure (GOSTSHYP) method. We examine the efficiency of this implementation on large chains of α-d-glucose units.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!