A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts. A model like EASEWASTE can be used by waste planners to optimize current waste management systems with respect to environmental achievements and by authorities to set guidelines and regulations and to evaluate different strategies for handling of waste. The waste hierarchy has for decades been governing waste management but the ranking of handling approaches may not always be the most environmentally friendly. The EASEWASTE model can identify the most environmentally sustainable solution, which may differ among waste materials and regions and can add valuable information about environmental achievements from each process in a solid waste management system.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0734242X06062580DOI Listing

Publication Analysis

Top Keywords

waste management
20
solid waste
16
waste
14
environmental assessment
8
assessment solid
8
waste systems
8
systems technologies
8
easewaste model
8
environmental impacts
8
management systems
8

Similar Publications

Sustainable management of textile industrial wastewater is one of the severe challenges in the current regime. It has been reported that each year huge amount of textile industry discharge especially the dye released into the environment without pre-treatment that adversely affect the human health and plant productivity. In the present study, different bacterial isolates had been isolated from the industrial effluents and investigated for their bioremediation potential against the malachite green (MG) dye, a major pollutant of textile industries.

View Article and Find Full Text PDF

In this study, an efficient membrane composed of polysulfone and graphene oxide was developed and evaluated for its efficacy in chromium adsorption. Characterization of the synthesized membrane involved comprehensive analyses including scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR) to assess its structural properties. Subsequently, the membrane's performance in removing chromium from aqueous solutions was scrutinized, considering key operational parameters.

View Article and Find Full Text PDF

Purpose: Biodiesel is a non-toxic, renewable, and environmentally friendly fuel used in compression ignition engines. This work aimed to develop FeO/SiO as a cheap, magnetic, and easy separable catalyst for biodiesel production from waste oil by sono-catalytic transesterification.

Methods: Fe₃O₄-SiO₂ was prepared using a modified Stober method and used as a heterogeneous catalyst in an ultrasound-assisted transesterification reaction to produce biodiesel.

View Article and Find Full Text PDF

Ecological concrete by partially substitution of cement with Cameroonian corn stover ash.

Heliyon

January 2025

Mechanics Laboratory, Doctoral Training Unit in Engineering Sciences, Doctoral School of Fundamental and Applied Sciences, University of Douala, P.O. Box: 2701, Douala, Cameroon.

This study focuses on the influence of the partial substitution of cement by Cameroonian corn stover ash (CCSA) on the physical and mechanical behavior of concrete. For this, as materials used, one has first the corn stovers coming from the Bandjoun town in the Koung-khi division, in the West region of Cameroon, which are used to obtain the ashes, while the sand used, came from the Sanaga River in the coastal region of Cameroon. In order to obtain the CCSA, the corn stover is calcined in an oven at 600 °C for 6 h and then characterized; the characterization included infrared spectrometry, X-ray fluorescence spectrometry, fineness of grinding, and absolute density.

View Article and Find Full Text PDF

Global perspectives on the biodegradation of LDPE in agricultural systems.

Front Microbiol

January 2025

Corporación para la Investigación de la Corrosión (CIC), Piedecuesta, Colombia.

The increasing use of plastics globally has generated serious environmental and human health problems, particularly in the agricultural sector where low-density polyethylene (LDPE) and other plastics are widely used. Due to its low recycling rate and slow degradation process, LDPE is a major source of pollution. This paper addresses the problem of plastic accumulation in agriculture, focusing on LDPE biodegradation strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!