Background: Gene regulated in breast cancer 1 (GREB1) is a novel estrogen-regulated gene shown to play a pivotal role in hormone-stimulated breast cancer growth. GREB1 is expressed in the prostate and its putative promoter contains potential androgen receptor (AR) response elements.
Methods: We investigated the effects of androgens on GREB1 expression and its role in androgen-dependent prostate cancer growth.
Results: Real-time PCR demonstrated high level GREB1 expression in benign prostatic hypertrophy (BPH), localized prostate cancer (L-PCa), and hormone refractory prostate cancer (HR-PCa). Androgen treatment of AR-positive prostate cancer cells induced dose-dependent GREB1 expression, which was blocked by anti-androgens. AR binding to the GREB1 promoter was confirmed by chromatin immunoprecipitation (ChIP) assays. Suppression of GREB1 by RNA interference blocked androgen-stimulated LNCaP cell proliferation.
Conclusions: GREB1 is expressed in proliferating prostatic tissue and prostate cancer, is regulated by androgens, and suppression of GREB1 blocks androgen-induced growth suggesting GREB1 may be critically involved in prostate cancer proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/pros.20403 | DOI Listing |
PLoS One
January 2025
Department of Public Health, Policy and Systems, University of Liverpool, Liverpool, United Kingdom.
Introduction: Undiagnosed chronic disease has serious health consequences, and variation in rates of underdiagnosis between populations can contribute to health inequalities. We aimed to estimate the level of undiagnosed disease of 11 common conditions and its variation across sociodemographic characteristics and regions in England.
Methods: We used linked primary care, hospital and mortality data on approximately 1.
Ann Nucl Med
January 2025
Department of Biomedical Sciences, Humanitas University, Milan, Italy.
The purpose of this systematic review was to evaluate the role of PSMA PET/CT in intermediate-risk prostate cancer (PCa) patients, to determine whether it could help improve treatment strategy and prognostic stratification. A systematic literature search up to May 2024 was conducted in the PubMed, Embase and Scopus databases. Articles with mixed risk patient populations, review articles, editorials, letters, comments, or case reports were excluded.
View Article and Find Full Text PDFJ Neurooncol
January 2025
Department of Neurosurgery, Allegheny Health Network, Neuroscience Institute, Pittsburgh, PA, United States.
Langenbecks Arch Surg
January 2025
Department for the Promotion of Medical Device Innovation, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
Purpose: Assessing surgical skills is vital for training surgeons, but creating objective, automated evaluation systems is challenging, especially in robotic surgery. Surgical procedures generally involve dissection and exposure (D/E), and their duration and proportion can be used for skill assessment. This study aimed to develop an AI model to acquire D/E parameters in robot-assisted radical prostatectomy (RARP) and verify if these parameters could distinguish between novice and expert surgeons.
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Radiology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
Objective: To evaluate the feasibility of utilizing artificial intelligence (AI)-predicted biparametric MRI (bpMRI) image features for predicting the aggressiveness of prostate cancer (PCa).
Materials And Methods: A total of 878 PCa patients from 4 hospitals were retrospectively collected, all of whom had pathological results after radical prostatectomy (RP). A pre-trained AI algorithm was used to select suspected PCa lesions and extract lesion features for model development.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!