Zonal gene expression in murine liver: lessons from tumors.

Hepatology

Institute of Pharmacology and Toxicology, Department of Toxicology, University of Tuebingen, Germany.

Published: March 2006

AI Article Synopsis

  • Gene expression in liver cells (hepatocytes) varies from the portal to central area of the liver lobule, but the reasons for this zonation are still unclear.
  • A proposed model suggests that this zonal difference arises from two opposing signals: one from central vein endothelial cells activating a beta-catenin pathway and another from blood-borne molecules activating Ras-dependent pathways.
  • These opposing signals create gradients that influence which enzymes and proteins are expressed in different regions of the liver lobule.

Article Abstract

Gene expression in hepatocytes within the liver lobule is differentially regulated along the portal to central axis; however, the mechanisms governing the processes of zonation within the lobule are unknown. A model for zonal heterogeneity in normal liver is proposed, based on observations of differential expression of genes in liver tumors from mice that harbor activating mutations in either Catnb (which codes for beta-catenin) or Ha-ras. According to the model, the regulatory control consists of two opposing signals, one delivered by endothelial cells of the central veins activating a beta-catenin-dependent pathway (retrograde signal), the other by blood-borne molecules activating Ras-dependent downstream cascades (anterograde signal). In conclusion, gradients of opposing signaling molecules along the portocentral axis determine the pattern of enzymes and other proteins expressed in hepatocytes of the periportal and pericentral domains of the liver lobule.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.21082DOI Listing

Publication Analysis

Top Keywords

gene expression
8
liver lobule
8
liver
5
zonal gene
4
expression murine
4
murine liver
4
liver lessons
4
lessons tumors
4
tumors gene
4
expression hepatocytes
4

Similar Publications

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response.

Proc Natl Acad Sci U S A

February 2025

Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.

Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.

View Article and Find Full Text PDF

Strigolactones regulate Bambusa multiplex sheath senescence by promoting chlorophyll degradation.

Tree Physiol

January 2025

State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Lab of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.

Culm sheaths are capable of photosynthesis and are an important class of non-leaf organs in bamboo plants. The source-sink interaction mechanism has been found to play an important role in the interaction between culm sheaths and internodes in Bambusa multiplex. Research on the regulatory mechanisms of culm sheath senescence is important for the study of internode growth, but reports in this regard are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!