The effect of altered gravity on single cells has been reported in a number of studies. From the investigation of the immune system response to spaceflight conditions, interest has focused on the influence of gravity on single lymphocytes. Microgravity has been shown to decrease lymphocyte activation and to influence motility. On the other hand, the effect of hypergravity on lymphocyte motility has not been explored. We studied the migration of human peripheral blood T lymphocytes cultured in vitro in a hypergravity environment (10g). After hypergravity culture for 1-11 days, T cells were seeded on a fibronectin-coated glass surface, observed by time-lapse bright-field microscopy, and tracked by a computer program. We found that T cells, activated and then cultured in hypergravity, become motile earlier than cells cultured at normal gravity. These results suggest that hypergravity stimulates T cell migration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00249-006-0046-xDOI Listing

Publication Analysis

Top Keywords

gravity single
8
hypergravity
6
hypergravity speeds
4
speeds development
4
development t-lymphocyte
4
t-lymphocyte motility
4
motility altered
4
altered gravity
4
cells
4
single cells
4

Similar Publications

Beyond Fang's fury: a computational study of the enzyme-membrane interaction and catalytic pathway of the snake venom phospholipase A toxin.

Chem Sci

January 2025

LAQV/Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto Rua do Campo Alegre, s/n 4169-007 Porto Portugal

Snake venom-secreted phospholipases A (svPLAs) are critical, highly toxic enzymes present in almost all snake venoms. Upon snakebite envenomation, svPLAs hydrolyze cell membrane phospholipids and induce pathological effects such as paralysis, myonecrosis, inflammation, or pain. Despite its central importance in envenomation, the chemical mechanism of svPLAs is poorly understood, with detrimental consequences for the design of small-molecule snakebite antidotes, which is highly undesirable given the gravity of the epidemiological data that ranks snakebite as the deadliest neglected tropical disease.

View Article and Find Full Text PDF

The phenomenon of snaking of vehicles can be caused by many factors. It results from the loss of the vehicle's straight-line direction of motion, which is intended by the driver. In this situation, for single-mass vehicles (like automobiles), special systems (braking) are activated, aiming to return the vehicle to the direction intended by the driver.

View Article and Find Full Text PDF

To improve the calculation accuracy of the Monte Carlo (MC) method and reduce the calculation time. Firstly, CNN and LSTM deep learning networks are introduced for designing nonlinear dynamic systems simulating dam stress. Then, spatial feature mining and sequence information extraction of nonlinear data of dam stress are carried out respectively, and a combined prediction model of dam stress depth (DS-FEM-CNN-LSTM) is proposed.

View Article and Find Full Text PDF

Resources and land carrying capacity are vital to the survival and development of human society and form the foundation for ensuring food security. However, evaluating land carrying capacity solely based on grain production is overly simplistic. A comprehensive assessment from the perspective of dietary nutrition is needed to more accurately reflect the actual carrying capacity of land.

View Article and Find Full Text PDF

Traditional sprayers are limited to applying spray mixture solely to the upper surfaces of crops. To overcome this limitation, a variable angle spraying machine (VASM) was designed using a linkage system. This machine enables the adjustment of both the spray position and angle through a single input signal, facilitating multi-directional spraying from the top to the bottom of crops.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!