The mechanism underlying enhancement of the cytotoxic effects of diphenylarsinic acid (DPAA) by sulfhydryl (SH) compounds, such as glutathione (GSH) and dimercaptopropane sulfonate (DMPS), was investigated in terms of not only the effects of SH compounds on DPAA uptake by cells, but also the cytotoxic effects of the GSH adduct of DPAA, DPA-GS. In addition, the cytotoxic effects of DPA-GS and cellular uptake were investigated in conjunction with the effects of GSH depletion. Cells took up DPAA in a time- and temperature-dependent manner for up to 2 h, then the uptake leveled off for 6 h. Arsenic species other than DPAA were not detected in the cells. The presence of GSH and DMPS did not influence the rate of uptake of DPAA by the cells. By contrast, when the cytotoxic potential of DPA-GS was compared with that of DPAA, DPA-GS was about 1,000 times more toxic than DPAA, suggesting that enhancement of DPAA toxicity by SH compounds might be due to the formation of adducts in the culture medium. The cytotoxic effects of DPA-GS were suppressed markedly by the presence of GSH and DMPS, and the suppression was attributed to an inhibition of more than 90% by the SH compounds of DPA-GS uptake. Depletion of cell GSH enhanced the cytotoxic effects of DPA-GS by two to three times and the enhancement attributed to an increased cellular uptake of DPA-GS. These results suggest that GSH plays a role in regulating the formation of DPA-GS and cellular uptake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00204-006-0067-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!