The fluorinated guanosine analog 2',3'-dideoxy-3'-fluoroguanosine (FLG) was shown to inhibit wild-type (wt) hepatitis B virus (HBV) replication in a human hepatoma cell line permanently expressing HBV. Experiments performed in the duck model of HBV infection also showed its in vivo antiviral activity. In this study, we investigated the mechanism of inhibition of FLG on HBV replication and its profile of antiviral activity against different HBV or duck hepatitis B virus (DHBV) drug-resistant mutants. We found that FLG-triphosphate inhibits weakly the priming of the reverse transcription compared to adefovir-diphosphate in a cell-free system assay allowing the expression of an enzymatically active DHBV reverse transcriptase. It inhibits more potently wt DHBV minus-strand DNA synthesis compared to lamivudine-triphosphate and shows a similar activity compared to adefovir-diphosphate. FLG-triphosphate was most likely a competitive inhibitor of dGTP incorporation and a DNA chain terminator. In Huh7 cells transiently transfected with different HBV constructs, FLG inhibited similarly the replication of wt, lamivudine-resistant, adefovir-resistant, and lamivudine-plus-adefovir-resistant HBV mutants. These results were consistent with those obtained in the DHBV polymerase assay using the same drug-resistant polymerase mutants. In conclusion, our data provide new insights in the mechanism of action of FLG-triphosphate on HBV replication and demonstrate its inhibitory activity on drug-resistant mutant reverse transcriptases in vitro. Furthermore, our results provide the rationale for further clinical evaluation of FLG in the treatment of drug-resistant virus infection and in the setting of combination therapy to prevent or delay drug resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1426422 | PMC |
http://dx.doi.org/10.1128/AAC.50.3.955-961.2006 | DOI Listing |
Zhonghua Gan Zang Bing Za Zhi
December 2024
Department of Infectious Diseases and Hepatology, Yichun People's Hospital, Yichun336000, China.
To compare the effectiveness and safety profile of tenofovir amibufenamide (TMF) and tenofovir alafenamide (TAF), especially the effects on lipid metabolism in the treatment of chronic hepatitis B. A retrospective study was conducted on the virological response rate, biochemical response rate, renal function indicators, and lipid metabolism status of 159 cases with chronic hepatitis B (72 cases with TMF and 87 cases with TAF) after 48 weeks of antiviral treatment. The effects of the two drugs on lipid metabolism were further explored through cell and animal experiments.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Liver Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America.
HBV genotype A has two major subtypes, A1 (commonly in Africa) and A2 (commonly in Europe) with only 4% nucleotide differences. Individuals infected with these two subtypes appear to have different clinical manifestations and virologic features. Whether such a difference results from the virus or host has not been established.
View Article and Find Full Text PDFViruses
December 2024
Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" (IRCCS), 00149 Rome, Italy.
Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production.
View Article and Find Full Text PDFViruses
December 2024
Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine.
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.
View Article and Find Full Text PDFViruses
December 2024
The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
Hepatitis B virus (HBV) can cause chronic infections, significantly increasing the risk of death from cirrhosis and hepatocellular carcinoma (HCC). A key player in chronic HBV infection is covalently closed circular DNA (cccDNA), a stable episomal form of viral DNA that acts as a persistent reservoir in infected hepatocytes and drives continuous viral replication. Despite the development of several animal models, few adequately replicate cccDNA formation and maintenance, limiting our understanding of its dynamics and the evaluation of potential therapeutic interventions targeting cccDNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!