Trypanosome RNA editing is massive post-transcriptional U-insertion and U-deletion, which generates mature mRNA coding regions through cycles of endonuclease, terminal U transferase (TUTase) or 3'-U-exo, and ligase action. Both types of editing are thought to be catalyzed by distinct sets of proteins of a multiprotein complex, and no enzymatic activity of wild-type editing complex had been shown to function in both forms of editing. By examining the individual steps of the U-deletion cycle using purified editing complex, traditional mitochondrial extract, and rapidly prepared cell lysate, we here demonstrate that TbMP57 TUTase of U-insertion can act efficiently within a U-deletion cycle. When physiological UTP levels are provided, it adds U's to the upstream cleavage fragment after U-deletional endonuclease and 3'-U-exo action, but before rejoining by the U-deletional ligase, generating partial U-deletion products. TUTase activity in U-deletion was not previously appreciated since its detection requires UTP, which is not normally added to in vitro U-deletion reactions. Fractionation and RNAi analyses show this U-addition in U-deletion requires TbMP57 TUTase be present and competent for U-insertion; such U-addition does not occur with another mitochondrial TUTase that is separate from the basic editing complex. Efficient TbMP57 action in both U-insertion and U-deletion suggests these two editing forms may be less separate than generally envisioned. Should such promiscuous TUTase action also occur in vivo, it could explain why editing utilizes substantially fewer U-deletional than U-insertional events and why partial editing appears preferential in U-deletion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1383585PMC
http://dx.doi.org/10.1261/rna.2243206DOI Listing

Publication Analysis

Top Keywords

u-deletion cycle
12
editing complex
12
editing
10
u-deletion
10
rna editing
8
u-insertion u-deletion
8
tbmp57 tutase
8
tutase
7
action
5
brucei rna
4

Similar Publications

RNA editing causes massive remodeling of the mitochondrial mRNA transcriptome in trypanosomes and related kinetoplastid protozoa. This type of editing involves the specific insertion or deletion of uridylates (U) directed by small noncoding guide RNAs (gRNAs). Because U-insertion exceeds U-deletion by a factor of 10, editing increases the nascent mRNA size by up to 55%.

View Article and Find Full Text PDF

Background: Most mitochondrial mRNAs in Trypanosoma brucei require RNA editing for maturation and translation. The edited RNAs primarily encode proteins of the oxidative phosphorylation system. These parasites undergo extensive changes in energy metabolism between the insect and bloodstream stages which are mirrored by alterations in RNA editing.

View Article and Find Full Text PDF

Structure of the core editing complex (L-complex) involved in uridine insertion/deletion RNA editing in trypanosomatid mitochondria.

Proc Natl Acad Sci U S A

July 2009

Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Uridine insertion/deletion RNA editing is a unique form of posttranscriptional RNA processing that occurs in mitochondria of kinetoplastid protists. We have carried out 3D structural analyses of the core editing complex or "L (ligase)-complex" from Leishmania tarentolae mitochondria isolated by the tandem affinity purification procedure (TAP). The purified material, sedimented at 20-25S, migrated in a blue native gel at 1 MDa and exhibited both precleaved and full-cycle gRNA-mediated U-insertion and U-deletion in vitro activities.

View Article and Find Full Text PDF

Massively parallel sequencing of millions of < 30-nt RNAs expressed in mouse ovary, embryonic pancreas (E14.5), and insulin-secreting beta-cells (betaTC-3) reveals that approximately 50% of the mature miRNAs representing mostly the mmu-let-7 family display internal insertion/deletions and substitutions when compared to precursor miRNA and the mouse genome reference sequences. Approximately, 12%-20% of species associated with mmu-let-7 populations exhibit sequence discrepancies that are dramatically reduced in nucleotides 3-7 (5'-seed) and 10-15 (cleavage and anchor sites).

View Article and Find Full Text PDF

Trypanosome mitochondrial mRNAs achieve their coding sequences through RNA editing. This process, catalyzed by approximately 20S protein complexes, involves large numbers of uridylate (U) insertions and deletions within mRNA precursors. Here we analyze the role of the essential TbMP42 protein (band VI/KREPA2) by individually examining each step of the U-deletional and U-insertional editing cycles, using reactions in the approximately linear range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!