In human body ascorbic acid plays an essential role in the synthesis and function of skeletal tissues and immune system factors. Ascorbic acid is also a major physiological antioxidant, repairing oxidatively damaged biomolecules, preventing the formation of excessive reactive oxygen species or scavenging these species. We recently reported the synthesis of ascorbic acid-functionalized polymers in which the antioxidant features of the pendant ascorbic acid groups was preserved. In the present work we demonstrate that ascorbic acid-functionalized poly(methyl methacrylate) (AA-PMMA) can modulate the proliferation and osteogenic differentiation of early and late-passage bone marrow-derived human mesenchymal stem cells (MSCs). The covalently coupled ascorbic acid impacted MSCs differently than when ascorbic acid was presented to the cells in soluble form. At optimal concentration, the covalently coupled ascorbic acid and soluble ascorbic acid synergistically promoted and retained the ability of MSCs to respond to osteogenic stimulation over extensive cell expansions in vitro. In the presence of soluble ascorbic acid, AA-PMMA films prepared at optimal concentrations (0.1 mg/ml in the present study) showed a significant promotive effect over other concentrations and tissue culture plastic (TCP) with respect to osteogenic differentiation of both EP (young) and LP (old) MSCs. These results suggest that the coupled ascorbic acid is acting mainly at the extracellular level and, at optimal concentrations, the immobilized extracellular ascorbic acid and soluble ascorbic acid synergistically promote osteogenic differentiation of MSCs. Importantly, the covalently coupled ascorbic acid on the films of optimal concentration was able to preserve the capacity of MSCs to undergo osteogenic differentiation in vitro. These results suggest an important role for functionalized biomaterials with antioxidant features in control of cell physiology and cell aging phenomena.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2006.01.036 | DOI Listing |
BMC Plant Biol
January 2025
Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Purpose: This study explored how exogenous silicon (Si) affects growth and salt resistance in maize.
Methods: The maize was cultivated in sand-filled pots, incorporating varied silicon and salt stress (NaCl) treatments. Silicon was applied at 0, 2, 4, 6, and 8 mM, and salt stress was induced using 0, 60 and120 mM concentrations.
Anal Chem
January 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China.
Human cells generate a bulk of aldehydes during lipid peroxidation (LPO), influencing critical cellular processes, such as oxidative stress, protein modification, and DNA damage. Enals, highly reactive α,β-unsaturated aldehydic metabolites, are implicated in various human pathologies, especially neurodegenerative disorders, cancer, and cardiovascular diseases. Despite their importance, endogenous enals remain poorly characterized, primarily due to their instability and low abundance.
View Article and Find Full Text PDFLuminescence
January 2025
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
Affordable and eco-friendly green spectrofluorometric (FL) methods can enhance the safety and cost-effectiveness of quality assurance and control in ascorbic acid (ASA) formulations. However, most current techniques for ASA analysis have faced challenges like complexity, delayed response times, low throughput, time-consuming procedures, and requirements for expensive equipment and hazardous chemicals for analyte modification. The study is aimed at producing natural carbon quantum dots (NACQDs) from pumpkin seed peels (PSPs), a natural waste material, using a rapid microwave-assisted method.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
Liver cancer is globally the most frequent fatal malignancy, and its identification is critical for making clinical decisions about treatment options. Pathological diagnostics and contemporary imaging technologies provide insufficient information for tumor identification. Hydrogen peroxide (HO), an emerging biomarker is a powerful oxidant found in the tumor microenvironment, and stimulates the invasion, proliferation, and metastasis of liver cancer cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
ZnO-doped CuO nanocomposites (CuO-ZnO NPs) of 1, 3, and 5 mol% were prepared by the solution combustion method using ODH as a fuel (Oxlyl-hydrazide) at 500 °C and calcining at 1000 °C for two hours and the Structural, photocatalytic, and electrochemical properties were investigated by experimental and theoretical methods. X-ray diffraction (XRD) patterns revealed a crystallite size (D) range of 25 to 31 nm for pure CuO and 1, 3, and 5 mol% CuO-ZnO NPs. According to calculations, the optical energy band gap (Eg) of the NPs is between 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!