We present a mathematical simulation which integrates the mechanisms that are currently believed to govern the concentration of the growth factor, IGF1, in cartilage. Articular cartilage is treated as a two-layer continuum: a thin surface layer, exposed to synovial fluid, with a higher cell density, and a deeper layer with impermeable bony endplate. A system of differential equations accounts for diffusion of IGF1 from synovial fluid into, and throughout, the cartilage; IGF1 synthesis, its reactions with soluble binding protein, with cell receptors, and with immobile binding sites on the extracellular matrix. We have collected all available physiologic data relevant to the solution of these equations and used it to compute numerical solutions that yield time dependent profiles for free and complex IGF1 throughout the depth of normal cartilage. Equations for osteoarthritic cartilage were formulated as well. Numerical results indicate a time-scale of several days for IGF1 profiles to settle down after a disturbance. The number of cell receptors for IGF1 appears to be more important than their rate of internalization. There is a lower bound to the number of cell receptors and of immobile binding sites. Parameters that await experimental determination are identified.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2006.01.004 | DOI Listing |
J Neuroendocrinol
January 2025
Department of Psychology, Columbia University, New York, New York, USA.
Among contributors to diffusible signaling are portal systems which join two capillary beds through connecting veins. Portal systems allow diffusible signals to be transported in high concentrations directly from one capillary bed to the other without dilution in the systemic circulation. Two portal systems have been identified in the brain.
View Article and Find Full Text PDFPostgrad Med J
January 2025
Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.
Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.
View Article and Find Full Text PDFTherapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Systems Pharmacology and Translational Therapeutics Laboratory, The Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University, Chieti, Italy.
Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
State Key Laboratory of Ophthalmology, Optometry and Visual Science, National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
Background: Developing carrier-free nanomedicines via self-assembly of two antitumor drug molecules is a potential strategy for enhancing the combination treatment of tumors. Similarly, conventional chemotherapy combined with photodynamic therapy may synergistically improve the antitumor effect while minimizing the adverse reactions associated with antitumor treatment. Hyaluronic acid (HA) can bind to overexpressed HA receptors on the tumor cell surface, increasing cell internalization and resulting in good tumor-targeting properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!