C-terminal binding: an expanded repertoire and function of 14-3-3 proteins.

FEBS Lett

Department of Neuroscience and High Throughput Biology Center, School of Medicine, Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205, USA.

Published: March 2006

Amino and carboxyl termini are unique positions in a polypeptide. They tend to be exposed in folded three dimensional structures. Diversity and functional significance of C-terminal sequences have been appreciated from studies of PDZ and PEX domains. Signaling 14-3-3 protein signaling by recognizing phosphorylated peptides plays a critical role in a variety of biological processes, including oncogenesis. The preferential binding of 14-3-3 to phosphorylated C-terminal sequences, mode III, provides a means of regulated binding and considerably expands the substrate repertoire of 14-3-3 interaction partners.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.febslet.2006.02.014DOI Listing

Publication Analysis

Top Keywords

c-terminal sequences
8
c-terminal binding
4
binding expanded
4
expanded repertoire
4
repertoire function
4
14-3-3
4
function 14-3-3
4
14-3-3 proteins
4
proteins amino
4
amino carboxyl
4

Similar Publications

Evolutionary Pro-To-Thr Mutation in the Intrinsically Disordered Domain of ANP32 Family Members Modulates Their Target Binding Modes.

Adv Sci (Weinh)

January 2025

Institute for Chemical Research (IIQ), Scientific Research Center "Isla de la Cartuja" (cicCartuja), University of Seville-CSIC, Avda. Americo Vespucio 49, Seville, 41092, Spain.

Gene duplication has allowed protein evolution toward novel functions and mechanisms. The differences between paralogous genes frequently rely on the sequence of disordered regions. For instance, in mammals, the chaperones ANP32A and ANP32B share a common evolutionary line and have some exchangeable functions based on their similar N-terminal domains.

View Article and Find Full Text PDF

Measles is a highly infectious disease and remains a major cause of childhood mortality worldwide. In some cases, the measles virus (MV) induces subacute sclerosing panencephalitis within several years of the acute infection. The infection of the target cells by MV is mediated by the F protein, in which two heptad repeat regions, HR1 and HR2, form a six-helix bundle before membrane fusion.

View Article and Find Full Text PDF

RNA recognition by minimal ProQ from Neisseria meningitidis.

RNA

January 2025

Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland

Neisseria meningitidis minimal ProQ is a global RNA binding protein belonging to the family of FinO-domain proteins. The N. meningitidis ProQ consists only of the FinO domain accompanied by short N- and C-terminal extensions.

View Article and Find Full Text PDF

The mammalian high mobility group protein AT-hook 2 (HMGA2) is a small DNA-binding protein that specifically targets AT-rich DNA sequences. Structurally, HMGA2 is an intrinsically disordered protein (IDP), comprising three positively charged 'AT-hooks' and a negatively charged C-terminus. HMGA2 can form homodimers through electrostatic interactions between its 'AT-hooks' and C-terminus.

View Article and Find Full Text PDF

The role of canopy family proteins: biological mechanism and disease function.

Mol Biol Rep

January 2025

Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xi Cheng District, Beijing, 100050, China.

Canopy family proteins are highly sequence-conserved proteins with an N-terminal hydrophobic signal sequence, a unique pattern of six cysteine residues characteristic of the saposin-like proteins, and a C-terminal putative endoplasmic reticulum retention signal sequence. At present, the known canopy family proteins are canopy fibroblast growth factor signaling regulator 1 (CNPY1), CNPY2, CNPY3, and CNPY4. Despite similar structures, canopy family proteins regulate complex signal networks to participate in various biological processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!