Mutations of mitochondrial DNA (mtDNA) are an important cause of genetic disease, yet rarely present in the neonatal period. Here we report the clinical, biochemical, and molecular genetic findings of an infant who died at the age of 1 mo with marked biventricular hypertrophy, aortic coarctation, and severe lactic acidosis due to a previously described but unusual mtDNA mutation, a 7-bp intragenic inversion within the mitochondrial gene encoding ND1 protein of complex I (MTND1). In direct contrast to the previous case, an adult with exercise intolerance who only harbored the mutation in muscle, the MTND1 inversion in our patient was present at high levels in several tissues including the heart, muscle, liver, and cultured skin fibroblasts. There was no evidence of the mutation or respiratory complex I defect in a muscle biopsy from the patient's mother. Transmitochondrial cytoplasmic hybrids (cybrids) containing high mutant loads of the inversion expressed the biochemical defect but apparently normal levels of the assembled complex. Our report highlights the enormous phenotypic diversity that exists among pathogenic mtDNA mutations and reemphasizes the need for appropriate genetic counseling for families affected by mtDNA disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1203/01.pdr.0000198771.78290.c4 | DOI Listing |
Clin Chem
January 2025
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
Background: Genetic testing has traditionally been divided into molecular genetics and cytogenetics, originally driven by the use of different assays and their associated limitations. Cytogenetic technologies such as karyotyping, fluorescent in situ hybridization or chromosomal microarrays are used to detect large "megabase level" copy number variants and other structural variants such as inversions or translocations. In contrast, molecular methodologies are heavily biased toward subgenic "small variants" such as single nucleotide variants, insertions/deletions, and targeted detection of intragenic, exon level deletions or duplications.
View Article and Find Full Text PDFTrends Genet
December 2024
National Library of Medicine, National Institutes of Health, Bethesda, MD, USA. Electronic address:
Nature
October 2024
Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA.
Bacterial populations that originate from a single bacterium are not strictly clonal and often contain subgroups with distinct phenotypes. Bacteria can generate heterogeneity through phase variation-a preprogrammed, reversible mechanism that alters gene expression levels across a population. One well-studied type of phase variation involves enzyme-mediated inversion of specific regions of genomic DNA.
View Article and Find Full Text PDFmedRxiv
August 2024
Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.
8q21.11 microdeletions encompassing the gene encoding transcription factor ZFHX4, have previously been associated by us with a syndromic form of intellectual disability, hypotonia, decreased balance and hearing loss. Here, we report on 57 individuals, 52 probands and 5 affected family members, with protein truncating variants (n=36), (micro)deletions (n=20) or an inversion (n=1) affecting with variable developmental delay and intellectual disability, distinctive facial characteristics, morphological abnormalities of the central nervous system, behavioral alterations, short stature, hypotonia, and occasionally cleft palate and anterior segment dysgenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!